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Abstract 
Glaciers are important and sensitive part of our environment which can be used as 
indicator of global warming and climate change. Glacier facies represent distinct regions 
of a glacier surface characterized by near surface structure and density that develop as a 
function of spatial variations in surface melt and accumulation. The facies mapping aids 
in delineating different zones of the glacier, which are useful in computing glacier mass 
balance and modeling. In this study we tested traditional and advanced classifica-       
tion techniques on the Edithbreen glacier situated in Ny-Ålesund, Svalbard, using 
WorldView-3 and Landsat 8 OLI. The comparison of the accuracy was conducted using 
error matrices. Six measures of accuracy were derived from the error matrices and were 
compared with each other to find the method delivering the most adequate output for 
facies mapping. The pixel-based approach applied to Landsat-8 data yielded higher 
accuracies (>80%) when compared to that. The object-oriented classification revealed a 
much better accuracy and high kappa coefficient for both low and high-resolution 
datasets. The study clearly indicates that the object-oriented classification provides better 
results for glacier facies classification when high spatial resolution is used, but for lower 
spatial resolution, pixel-based methods are adequate.   
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Satellite, MD - Minimum Distance classification, MHD - Mahalanobis Distance clas-
sification, MXL - Maximum Likelihood Classification,  MODTRAN - Moderate reso-
lution atmospheric Transmission, MS - Multispectral, MSS - Multi-Spectral Scanner, 
NIR - Near-Infrared, OA - Overall Accuracy, OBC - Object-Based Classification,     
OBIA - Object-Based Image Analysis, OLI - Operational Land Imager, OOC - Object 
Oriented Classification Rule set, PA - Producer’s Accuracy, PBC - Pixel Based-Clas-
sification, PC - Panchromatic, SAR -  Synthetic Aperture Radar, SPOT- Satellite Pour 
l'Observation de la Terre, SWIR - Short-Wave Infrared, TERCAT - Terrain Cate-
gorization, TIRS - Thermal Infrared Sensor, TM - Thematic Mapper,  TOA - Top-of-
Atmosphere, UA - User’s Accuracy, USGS - U.S. Geological Survey,  VHR - Very High 
Resolution, VIS - Visible, WV- WorldView.  
 
 
Introduction   
 
     A glacier, which is a persistent dense 
mass of ice that is constantly moving due 
to its own weight, is formed when accu-
mulation of snow in an area is higher than 
ablation. Since the glacier is affected by 
long-term climatic changes in terms of al-
tered air temperature, precipitation, cloud 
cover, so on, they are considered to be very 
sensitive indicators of climate change. Gla-
cier facies represent distinct regions char-
acterized by near surface structure and 
density that develop as a function of spa-
tial variations in surface melt and accumu-
lation. Glacier facies can be divided into 
zones each having unique spectral charac-
teristics based on moisture, texture, hard-
ness, impurities, stratification, grain size, 
(Jawak et al. 2018). The term facies was 
first distinguished by Benson (1961) and 
later modified by Muller (1962), Benson 
and Motyka (1979) and Paterson (1981) 
and later by Williams et al. (1991). Based 
on Paterson’s nomenclature, glacier facies 
can be divided into dry zone, percolation 
zone, wet snow zone, superimposed ice 
zone, and bare ice zone (Paterson, 1981).  
     The climate warming in the Arctic af-
fects the glacier mass budget (Box et al. 
2019), and changes in the distribution of 
glacier facies are indicative of their re-
sponse to the climate change. The state of 
the glacier and its response to the climate 
change can be assessed by comparing the 
extent of glacier facies at the end of melt 

season to that in the previous melt season, 
as at this time they are highly distinguish-
able, when the equilibrium line altitude 
(ELA) is in its annual maximum and gla-
cier mass is in annual minimum (Benn and 
Evans 2014). Monitoring the spatial varia-
bility in snow and ice surface facies on 
glacier, ice sheet and ice caps can improve 
our understanding of changes in surface 
albedo and associated temperature and re-
gional mass balance feedback mechanisms. 
     The surface signature in the spectral do-
main is used to characterize surface types 
and conditions using hard/soft classifica-
tion, manual/supervised/unsupervised clas-
sification, parametric/nonparametric classi-
fication, spatial/spectral segmentation, pix-
el/ subpixel classification, and multispec-
tral/ hyperspectral classification (Schowen-
gerdt 2007). The choice of hard versus soft 
classification strategies depends on the 
natural characteristics of the boundary be-
tween two surface types, as well as on the 
sensor’s spectral, spatial, and radiometric 
resolution. Manual delineation is adopted 
for accuracy assessments, ground data ref-
erence acquisition, or correction of oth-   
er classifications. Supervised classification 
(such as MXL, MHD, MD, and OOC which 
are used in this work) involves intensive 
computer training on a priori operated se-
lected categories to statistically represent 
spectral variations.  
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     In unsupervised classification, automat-
ic differentiation of spectral clusters in fea-
ture space is done, based upon an initial 
selection of the number of classes desired. 
The use of a parametric algorithm assumes 
a certain statistical distribution and condi-
tions associated with a spectral sample 
(e.g. normal distribution, homogeneity of 
variance). Image segmentation can also   
be accomplished using spatial information 
such as texture and spatial topology which 
is based upon contextual relationships be-
tween pixels or objects (Kääb et al. 2014). 
Finally, the spectral and spatial approaches 
can be combined for spatial–spectral seg-
mentation. Quantifying the glacier features 
that contribute to the spectral signature of 
a mixed pixel leads to subpixel classifi-
cation which is used to analyse the spectral 
properties of every pixel within the area  
of interest, without taking into account the 

spatial or contextual information related to 
the pixel of interest (Nijhawan et al. 2016, 
Weih and Riggan 2010). In multispectral/ 
hyperspectral classification, approaches can 
be applied using a variable number of spec-
tral bands. Some techniques are especially 
suited for hyperspectral data and a number 
of additional algorithms that are based upon 
spectral matching can be used (Lillesand 
and Kieffer 2000, Schowengerdt 2007). 
     The objectives of the study were (1) to 
test various methods of information ex-
traction from spectral images to derive gla-
cier facies at a test glacier in Svalbard, and 
(2) to compare traditional and advanced 
methods for glacier classification. In that 
process, we determined the overall accura-
cy of each classification method and tested 
various traditional and new customised in-
dices available in literature for the classifi-
cation of facies. 

 
 
Materials and Methods 
 
Study area 
 
     The study area is situated in the Ny-
Ålesund which is research town on the 
Brøgger peninsula on the shore of the 
Kongsfjorden Bay on the island of Spits-
bergen in Svalbard, Norway. The area of 
Svalbard is about 63 000 km2, with nearly 
60% of the region covered with snow (Sand 
et al. 1991). Svalbard is mostly surrounded 
by drift ice during winter, but generally ice 
free in summer. It is situated in an active 
oceanic and atmospheric transport zone, 
where most of the ice from land enters  
into the Arctic Ocean through Fram Strait 
which is situated in west of Svalbard 
(Yamanouchi and Ørbæk 1995). The Sval-
bard archipelago has around 2 100 glaciers 
covering an area of 33 922 km2 (Pfeffer et 
al. 2014). The majority of glaciers are of 
sub-polar type (Hagen et al. 1993). The 
precipitation is around 400 mm annually at 
the western coast of Spitsbergen (Hagen et 
al. 1993). Svalbard consists of various types 

of glacier and large continuous ice masses 
are the most dominant type (Hagen et al. 
1993).  
     In Svalbard, most of the glaciers are 
valley, cirque and piedmont glaciers based 
on morphological classification. It has been 
difficult to classify the complex glacier 
system because of the intricate network of 
ice that covers the large inland areas of 
Spitsbergen. Tyrrell (1922) used the term 
reticular glaciers and Ahlmann (1933) pro-
posed transection glaciers for parts of the 
glaciated areas. Ice caps are common on 
the relatively flat islands on the eastern 
half of the Svalbard archipelago. Cirque 
glaciers are most common in the high 
mountain (alpine) ranges along the west 
coast. The majority of Svalbard's glaciers 
belong to the subpolar type because (1) the 
accumulation area is at the melting point, 
and the ablation zone is below the freezing 
point and partly frozen to the ground, and 
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(2) large accumulations of ice (icings) in 
front of their termini are produced by the 
drainage of subglacial water throughout 
the entire winter season. In summer, how-
ever, melting takes place on the surface of 
all the glaciers, even at the highest eleva-
tions. 

     The study area is situated in the Ny-
Ålesund which is research town on the 
Brøgger Peninsula on the shore of the 
Kongsfjorden Bay on the island of Spits-
bergen in Svalbard, Norway. The target ar-
ea is Edithbreen which is a 3.27 km2 subpo-
lar glacier situated at 78° 51' N, 12° 08' E.   

 

 
 
Fig. 1. The study area in the Svalbard region showing different glaciers. Edithbreen glacier is the 
focus of this study. 

 
Data  
 
     WV-3 satellite-based optical imagery 
was used in this study. WV-3 is a sun-
synchronous satellite orbiting at an altitude 
of 617 km2 with an inclination of 98°. The 
temporal resolution of WV-3 is less than 1 
day at 1m GSD. The data was acquired on 
10 August 2016 and was available in three 
tiles each having MS, PC and SWIR bands. 

The details of the WV-3 bands are provid-
ed in Table 1. For comparison with WV-3 
data we used Landsat-8 OLI data for the 
same date as WV-3. Landsat-8 OLI/TIRS 
was flown on Earth Resources Technology 
Satellite on February 2013. The configura-
tion of the bands on Landsat-8 is provided 
in Table 2. 

 
Methods 
 
     The protocol adopted for pre- and post-
processing of the WV-3 data is depicted in 
Fig. 2. The image pre-processing generally 
involves radiometric calibration, geometric 

correction/image registration, and atmos-
pheric correction (Lu and Weng 2007, Sow-
mya et al. 2017). 
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 Ground Resolution (m) 
Band Name Spectral range  

(nm) Nadir Off-nadir (20°) 
Panchromatic 450-800 0.31 0.34 
Coastal       (B1) 400-450 1.24 1.38 
Blue           (B2) 450-510 1.24 1.38 
Green         (B3) 510-580 1.24 1.38 
Yellow       (B4) 585-625 1.24 1.38 
Red            (B5) 630-690 1.24 1.38 
Red Edge  (B6) 705-745 1.24 1.38 
NIR-1        (B7) 770-895 1.24 1.38 
NIR-2        (B8) 860-1040 1.24 1.38 
SWIR-1     (B9) 1195-1225 3.7 4.1 
SWIR-2   (B10) 1550-1590 3.7 4.1 
SWIR-3   (B11) 1640-1680 3.7 4.1 
SWIR-4   (B12) 1710-1750 3.7 4.1 
SWIR-5   (B13) 2145-2185 3.7 4.1 
SWIR-6   (B14) 2185-2225 3.7 4.1 
SWIR-7   (B15) 2235-2285 3.7 4.1 
SWIR-8   (B16) 2295-2365 3.7 4.1 

 
Table 1. Details of bands of WorldView-3. 

 
Bands Spectral range  

(nm) 
Ground resolution  

(m) 
Band1 - Ultra Blue (coastal/aerosol) 435 - 452 30 
Band2 - Blue 452 -  512  30 
Band 3 - Green 533 - 590 30 
Band 4 - Red 636 - 673 30 
Band 5 - Near Infrared (NIR)  851 - 879 30 
Band 6 - Shortwave Infrared (SWIR) 1 1566 - 1651 30 
Band 7 - Shortwave Infrared (SWIR) 2 2107 - 2294 30 
Band 8 - Panchromatic 503 - 676 15 
Band 9 - Cirrus 1363 - 1384 30 
Band 10 - Thermal Infrared (TIRS) 1 1060 - 1119 100 * (30) 
Band 11 - Thermal Infrared (TIRS) 2 1150 - 1251 100 * (30) 

 
Table 2. Bands available in Landsat-8 OLI/TIRS. 
 
 
     The raw data, which consisted of 3 dif-
ferent tiles of DN file, were converted to 
at-sensor spectral radiance file using radio-
metric calibration tool of ENVI 5.3 (L3 
Harris Geospatial, software). The radio-
metric calibration converts the raw DN val-

ue to the at-sensor radiance value using the 
equation ([1] - ENVI User’s Guide 2009): 
Radiance = Gain * DN + offset values. 
     The relative motion of the earth, sensor 
and platforms, curvature of the earth, vari-
ation in altitude and position of platform 
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and nonidealities in sensor is the major 
cause of this geometric distortion. The 
geometric correction generally consists of 
the two processes (Sowmya et al. 2017). 
First, correction of the geometric distortion 
caused due variation of sensor-Earth geo-
metry. Second, conversion of data to real 
world coordinates. Radiometric correction 
is used for removal of sensor or environ-
mental induced errors (Jensen 2015). The 
common induced radiometric errors are 
random bad pixels (shot noise), line-start/ 
stop problems, line or column drop-outs, 
partial line or column drop-outs and line or 
column striping (Jensen 2015). The radio-
metric calibration tool calibrate the image 
data (raw DN values) to radiance, reflec-
tance or brightness temperature ([1] - ENVI 
User’s Guide 2009).  
     The geometric correction was done 
using the Image Registration Workflow of 
ENVI 5.3. The centre tile was used as a 
base image and the geometrically distorted 
tile was used as a warp image. The first 
three tie point between the images was 
manually provided and the rest was com-
puted automatically. The mosaicking was 
used to combine the multiple raster files 
into a single raster using seamless mosaick-
ing (Lu et al. 2014). Atmospheric correc-
tion is required to rectify scattering and 
absorption of the energy by the radiated 
light during the course of travel from ob-
ject to the sensor and topographic attenu-
ation. We used FLAASH tool developed 
by Air Force Philips Laboratory, Hanscom 
AFB and Spectral sciences, Incorporation 
([2] - Flaash 2009, Jensen 2015). FLAASH 
provide selection for any of the standard 
MODTRAN model atmospheric and aero-
sol type specific to the scene and user re-
quirement, and provide the user with a 
unique MODTRAN solution for each im-
age ([3] - Exelis Quac and Flaash 2009). 
FLAASH has options for correction for 
pixel mixing due to scattering of surface 
reflected radiance. 
     The FLAASH output file has the scale 
of 10 000 which was then corrected to the 

scale of 0 -1 using band math function in 
ENVI 5.3. The rescaling reflectance was 
done to obtain a comparable spectral pro-
file of the surface characteristics to vari-
ous spectral library and available litera-
ture. The geographic coordinate system 
(GCS_WGS_1984) was then converted to 
the Projected Coordinate System (WGS_ 
1984_UTM_Zone_33N) using the Re-
project Raster tool of the ENVI 5.3. The 
boundaries of the glaciers were manually 
digitized using ArcMap 10.4. Edithbreen 
glacier was then delineated from the study 
area using clip tool available in the Raster 
Management toolbox.  
     The PBC use only the spectral signa-
ture of a single pixel and possesses maxi-
mum spatial resolution. Because of the 
high spatial resolution of the WV-3, the 
PBC was appropriate to classify pixels of 
crevasses, debris, etc. PBC considers the 
satellite imagery to be a collection of pix-
els having spectral information unique to 
the land cover type. Therefore it is re-
quired to input spatial variables and trans-
formation is achieved in the pixel-wise 
classification (Li et al. 2014). The selec-
tion of ROI was done on the basis of visu-
al interpretation, spectral reflectance, user 
knowledge and experience. The ROI for 
Edithbreen was created and the spectral 
reflectance was compared to previous stud-
ies (Jawak et al. 2019) and spectral librar-
ies were used to assign class to each ROI. 
The supervised classification of the glacier 
was performed using the TERCAT tool of 
the ENVI 5.3 into 10 classes which are cre-
vasses, debris, dry snow, melting ice, off-
glacier, percolation snow, shadow, water 
stream, wet snow, dirty ice. We used ad-
vanced supervised classifiers: MXL, MHD, 
and MD, as these have been reported to 
deliver higher accuracies in the previous 
studies (Jawak et al. 2018, 2019). 
     For the OOC, we adopted multiresolu-
tion segmentation using Trimble eCogni-
tion Developer 9 ([4] - eCognition Devel-
oper 2014). The image was segmented by 
using two different scale parameters. One 
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parameter was set to include the crevasses 
and water stream named as OOC-1 and the 
other do not comprises of crevasses and 
water stream named as OOC-2. This was 
done to check whether the smaller objects 
affect the classification accuracy or not. 
The weightage for each band for OOC-1 
and OOC-2 were as follows: Coastal: 2, 
Blue: 3, Green: 4, Yellow: 2, Red: 3, Red 
Edge: 2, NIR-1: 3, NIR-2: 2, SWIR-1 and 
SWIR-2: 3, SWIR-3, SWIR-4, SWIR-5: 2, 
and SWIR-6, SWIR-7, SWIR-8: 1. The 
scale parameter for OOC-1 and OOC-2 
was set to 2 and 10, respectively, while the 
shape and compactness for both were as-
signed the value of 0 and 0.9, respectively. 
The segmented image was subsequently 

used for developing customized spectral in-
dex ratios (SIRs) (Table 3) to facilitate the 
optimal identification and extraction of the 
facies. The bands used to develop the in-
dices were selected after a repetitive trial-
and-error method to achieve the best possi-
ble combination in accordance to the spec-
tral response pattern of the various targets 
(facies) and the band characteristics. The 
utilization of indices to extract facies cre-
ates the need for assigning thresholds. 
Therefore, one particular threshold from a 
single index or a combination of thresh-
olds from more than one index can be con-
sidered to be a unique specification of the 
spectral characteristics of a particular fa-
cies (Jawak et al. 2017). 

 

 
 

Table 3. Customized Spectral Index Ratios used in the study. Note: NDSI: Normalized-Difference 
Snow Index, NDSII: Normalized-Difference Snow Index I, S3: new Snow Index, NIR/SWIR: 
Near-Infrared/Short-Wave Infrared. 

 
 
     
     The accuracy assessment was done by 
using error matrix. The reference points 
were generated using the unclassified at-
mospherically corrected imagery of the gla-
cier without considering any of the clas-
sified images of either PBC or OBC to 
avoid any bias. Ten reference points for 
each class was created using shapefile in 
ArcMap 10.4, resulting in overall 100 ref-
erence points. There was no ground truth 
available close as the date of satellite im-

age acquisition, so an equalized random 
sampling approach was adopted and vali-
dation was performed based on interpreta-
tion of the spectral plots and visual anal-
ysis (Keshri et al. 2009). For OBC output, 
the accuracy assessment was done using 
ArcMap 10.4 by manually checking each 
reference points and generating the error 
matrix. The statistical measures used for 
accuracy assessment were OA, PA, UA, 
EC, EoO, and kappa coefficient.  
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Fig. 2. The protocol followed for pre- and post-processing of the WV-3 data. 
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Results 
 

 
 

Fig. 3. Classification output maps using MXL, MHD, MD and OOC on WV-3 and L-8 imagery 
for Edithbreen glacier. 
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     Fig. 3 depicts the output maps using  
the supervised classification consisting of 
MXL, MHD, MD, and OOC using WV-3 
(left panel) and L-8 (right panel). The sta-
tistical measures such as overall accuracy 
and kappa are shown in Fig. 4. The com-
parative analysis of the results indicated 
that the PBC methods were inferior to    
the OOC techniques. Among the PBC, the 
MXL classifier outperformed (overall accu-
racy: 83%, ĸappa: 0.81) with lowest error 
of commission (12.48%) and the error of 
omission at 17% with percentage for dif-
ferent classes as follows: 15% for melting 
ice, 14% water streams, 13% each for de-
bris and percolation snow, 10% each for 
dry snow and shadow, 11% for off-glacier, 
8% for crevasses, and 6% for wet snow 
(Figs. 3a and 4). Among the other classi-
fiers MD underperformed (overall accu-
racy: 55%, ĸappa: 0.50) with highest er- 
ror of commission (49.30%) and error     
of omission (45.00%) (Fig. 3c). The per-
formance of MHD was marginally better 

(overall accuracy: 67%, ĸappa: 0.64, error 
of commission: 28.21%) and error of omis-
sion: 33.00%), with percentage of the dif-
ferent classes as follows: 18% for perco-
lation snow, 11% each for melting ice and 
off-glacier, 12% each for shadow and wet 
snow, 9% for dry snow, 7% each for un-
classified and debris, 4% for water stream 
and dirty ice, and 5% for crevasses (Fig. 
3b). 
     The OOC method using on WV-3 (Fig. 
3d) has outstanding performance (overall 
accuracy: 96%, ĸappa: 0.96) with least er-
ror of commission (3.78%) and error of 
omission (4.00%) with percentage for dif-
ferent classes as follows: 12% for debris, 
10% each for crevasses, melting ice, off-
glacier, percolation snow, shadow, water 
stream, dirty ice, and 9% for wet snow. 
Likewise, OOC was applied to L-8 yielded 
overall accuracy: 96.67%, and ĸappa: 0.96 
with least error of commission (2.78%) and 
error of omission (3.33%) (Figs. 3h and 4). 

 

 

 
 
Fig. 4. Measures of accuracy (overall accuracy and kappa) for supervised classification. 
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Discussion 
 
     The accuracy of the classification re-
sults obtained by using L-8 was found 
higher than that obtained by using WV-3 
data, but the classes formed in the WV-3 
dataset was higher (Fig. 3a-d) than that of 
L-8 (Figure 3e-h), owing to high resolution 
of the WV-3 which allowed selection of 
more classes than L-8. The study showed 
that the higher resolution is better to select 
small facies and classes such as wet snow, 
percolation snow, crevasses and water 
stream. These small classes were not quite 
visible in the L-8 data due to the low spa-
tial resolution, they were not classified. A 
maximum of nine classes were formed 
using the WV-3 data, but only six clas-  
ses were formed using the L-8 (compare 
Fig. 3a-d and Fig. 3e-h). The percolation 
snow and wet snow were not visibly de-
tected in L-8 data and were classified com-
monly as the Wet Semi-Saturated Snow 
(Figure 3e-h). Debris was also undetected 
in L-8 and was confused with the Off-
Glacier, but due to the higher reflectance 
in SWIR it was considered as Off-Glacier.  
     Among the PBC methods applied for 
L-8 data, higher accuracy was achieved for 
the MHD classifier (Fig. 3f), but the WV-3 
data showed higher accuracy for MXL 
classifier among the PBC methods (Fig. 
3a). This suggests that the spatial resolution 
play a significant role on the classification 
results of glacier facies. The accuracy ob-
tained from the OOC methods surpasses 
that from the PBC classification for both 
the datasets (Figs. 3d and 3h). This indi-
cates that advanced classification has su-
premacy over the traditional classification 
system.  
     Rastner et al. (2014) compared glacier 
classification by using the OBC and PBC 
techniques in three test regions and found 
that the OBC performed 3% better than the 
PBC. For PBC they mapped clean ice and 
snow using band ratio algorithms by util-
izing VIS and SWIR bands. For OBC, the 
image was segmented into objects using    

a multi-resolution segmentation algorithm 
and was then classified by applying thresh-
olds to the ratio of VIS and SWIR. The 
accuracy assessment was carried out to 
compare the performance of the two tech-
niques. Jawak et al. (2018) compared the 
OBC and PBC methods by using very high 
resolution WV-2 imagery, and reported an 
overall accuracy of 97.14% and 74.28%, 
respectively. Their study suggests that the 
OBC approach is far more accurate than 
the PBC approach. 
     This study demonstrated that traditional 
pixel-based classifiers work more efficient-
ly on moderate resolution such as L-8, but 
the accuracy decreased when high resolu-
tion satellite imagery was used. This is 
caused due to “salt and pepper (speckles)” 
effect created in the classification of high 
resolution dataset resulting in the mixed 
pixels. At this point it is prudent to men-
tion the advantages of object-based ap-
proach over the pixel-based approach. First, 
the change of classification units from pix-
els to image objects reduces within-class 
spectral variation and generally removes 
the salt-and-pepper effects that are typical 
in PBC. Second, a large set of features 
characterizing object´s spatial, textural, and 
contextual properties can be derived as 
complementary information to the direct 
spectral observations to potentially improve 
classification accuracy (Guo et al. 2007). 
The results of OA for OOC using WV-3 
data showed 96.00%) which was at par 
with L-8 (96.67%). Thus, the advance clas-
sifier can be utilized for achieving higher 
efficiency when classification is done us-
ing the high resolution data. Although, if 
moderate or coarser resolution dataset is 
used then the PBC would be enough to 
produce optimum result but higher resolu-
tion dataset requires the utilization of ad-
vanced classification methods. 
     Paul et al. (2016) tested various spectral 
band combinations to map glacier and com-
pared the glacier mapping capabilities of 
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the Sentinel 2 and Landsat OLI using raw 
DNs. They also mapped snow and bare ice 
using TOA reflectance from Sentinel 2 
data. Their study showed that the higher 
resolution allows for more precise digiti-
zation thus providing more accurate deline-
ation of the glacier area. Paul et al. (2002) 
compared TM-derived glacier areas with 
SPOT pan imagery, IRS-1C and Ikonos 
and inferred that the areas derived from 
high resolution imagery were found to be 
smaller, as compared to Landsat TM. Their 
study also suggested the use of the thresh-
old ratio images for efficient and auto-
mated glacier mapping. 
     The applicability of OLI and TIR sen-
sor on board L- 8 satellite was evaluated 
by Bhardwaj et al (2015). Their study dem-
onstrated the use of an algorithm that em-
ploy data in Blue, NIR, SWIR and TIR 
bands for automated glacier facies and su-
praglacier debris mapping; they validated 
the results using the field based observa-
tions. The study classified the glacier sur-
face into crevasses, clean ice, dirty glacier 
ice/mixed pixels (due to seasonal snow), 
slush zone, snow and supra-glacial debris. 
The debris covered glacier was delineation 
using OBIA by combining SAR coherence 

data with optical and topographical data 
(Robson et al. 2015) in the Manaslu region 
of Nepal using the L-8 imagery. They semi-
automatically mapped the clean ice with 
an accuracy of 93.3% (6.7% error) and   
the debris-covered portions to an accuracy 
of 83.3% (error: 16.7%) given accuracy of 
91.1% over the entire glacier. The study 
also suggested the use of high resolution 
DEM and temporarily consistent data to 
improve the accuracy. 
     Derivation of glacier surface character-
istics using hyperspectral datasets derived 
from Hyperion sensor onboard EO-1 satel-
lite had been carried out elsewhere (Gore 
et al. 2017) using SAM classifier for snow 
mapping. The accuracy assessment was 
done using validation of the classified im-
ages using spectral library (USGS and 
ASTER) and field-based spectral radio-
metric measurements. The facies deriva-
tions using medium resolution satellite 
such as L-8 OLI still has a potential for 
mapping facies as demonstrated in this 
work using a few classifiers. But short time 
span of data of L-8 OLI is still a challenge 
for monitoring long term change detection 
studies, so a time series is recommended.  

 
 
Future Directions 
 
     The performance of OOC was found 
higher than that of PBC. Use of spectral 
indices suggests that better results for gla-
cier facies classification can be achieved. 
This study demonstrated that high reso-
lution data improved classification perfor-
mance combined with the OOC, but mod-
erate or coarser resolution data can be com-
bined with PBC for improving the accu-
racy. Studies involving mapping of smaller 

classes such as distinct percolation snow 
zone, wet snow zone, crevasses and wa- 
ter stream use of high resolution imagery 
becomes a compulsion. The future work 
should include a detailed ground survey, 
temporal study of facies to detect changes 
using remote sensing data, more advanced 
classification techniques and customized 
spectral indices for improving facies ex-
traction. 
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