Title:

Effects of controlled oxidative stress and uncouplers on primary photosynthetic processes in vegetative cells of Antarctic alga Zygnema sp.

Authors Name:   

Christos Kakkou, Miloš Barták, Josef Hájek, Kateřina Skácelová, Jana Hazdrová

Journal: Czech Polar Reports
Issue: 6
Volume: 1
Page Range: 96-107
No. of Pages: 12
Year: 2016
DOI:

10.5817/CPR2016-1-10

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

In our study, we present responses of Antarctic strain of filamentous alga Zygnema sp. collected at James Ross Island (Antarctica) to application of variuos uncouplers of pri-mary photosynthetic processes. We exposed the alga to different concentrations of nigericin, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), dithiothreitol (DTT), methyl viologen (MV) and hydrogen peroxide (H2O2) in order to test stability of photosystem II, involvement of non-photochemical quenching, and PS II functioning under combination of moderate light with particular uncoupler. Oxidative stress tolerance was tested by the combination of hydrogen peroxide (H2O2) and moderate light. Time courses of FV/FM, FPSII, NPQ and qF0 were investigated and particular effects of the above-specified chem-icals discussed. Moderate doses of uncouplers allowing partial recovery, and the doses causing full inhibition of PS II were specified.       
 

Keywords: chlorophyll fluorescence, PS II, alga, fillamentous, photosynthesis blockers
 

References:

Antal, T. K., Osipov, V., Matorin,  D. N. and Rubin, A.B. (2011): Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. Journal of Photochemistry and Photobiology B: Biology, 102: 169-173.

Bukhov, N. G., Egorova, E. A., Govindacharya, S. and Carpentier, R. (2004): Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1657: 121-130.

Conti, S., Hazdrová, J., Hájek, J., Očenášová, P., Barták, M., Skácelová, K. and Adamo, P. (2014): Comparative analysis of heterogeneity of primary photosynthetic processes within fruticose lichen thalli: Preliminary study of interspecific differences. Czech Polar Reports, 4: 149-157.

Cornic, G., Bukhov, N.G., Wiese, C., Bligny, R. and Heber, U. (2000): Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants; role of photosystem I-dependent proton pumping. Planta, 210: 468-477.

Cruz, S., Goss, R., Wilhelm, Ch., Leegood, R., Horton, P. and Jakob, T. (2011): Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cyclein the diatom Thalassiosira pseudonana. Journal of Experimental Botany, 62: 509-519.

Dall´Osto, L., Caffarri, S. and Bassi, R. (2005): A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. The Plant Cell, 17: 1217-1232.

Ducruet, J. M., Gaillardon, P. and Vienot, J. (1984): Use of chlorophyll fluorescence induction kinetics to study translocation and detoxication of DCMU-type herbicides in plant leaves. Zeitschrift für Naturforschung, 39 c: 354-358.

Endo, T., Asada, K. (1996): Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant and Cell Physiology, 37: 551-555.

Essemine, J., Govindachary, S., Joly, D., Ammar, S., Bouzid, S. and Carpentier, R. (2012): Effect of moderate and high light on photosystem II function in Arabidopsis thaliana depleted in digalactosyl-diacylglycerol. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1817: 1367-1373.

Falkowski, P. G., Raven, J. A. (2007) :Aquatic photosynthesis, 2nd, edition. Princeton University Press, Princeton, 484 p.

Fan, Da-Y., Jia, H., Barber, J. and Chow, W. S. (2009): Novel effects of methyl viologen on photosystem II function in spinach leaves. European Biophysics Journal, 39: 191-199.

Fernández-Marín, B., Becerril, J. M. and García-Plazaola, J. I. (2010): Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. Planta, 231: 1335-1342.

Fuller, Ch. L. (2013): Examining morphological and physiological changes in Zygnema irregulare during a desiccation and recovery period. Master Thesis, California State University, San Marcos, California, USA, 73 p.

Hawes, I. (1989): Filamentous green algae in freshwater streams on Signy Island, Antarctica. Hydrobiologia, 172: 1-18.

Herburger, K., Lewis, L.A. and Holzinger, A. (2015): Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma, 252: 571-589.

Holzinger, A., Roleda, M. and Lütz, C. (2009): The vegetative arctic green alga Zygnema is insensitive to experimental UV exposure. Micron, 40: 831-838.

Iriel, A., Novo, J.M., Cordon, G.B. and Lagorio, M.G.  (2014): Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited–implications in photosystems emission and ecotoxicity assessment. Photochemistry and Photobiology, 90: 107-112.

Joliot, P., Johnson,  G. N. (2011): Regulation of cyclic and linear electron flow in higher plants. PNAS, 108: 13317-13322.

Kaňa, R., Kotabová, E., Sobotka, R. and Prášil, O. (2012) : Non-photochemical quenching in Cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS ONE, http://dx.doi.org/10.1371/journal.pone.0029700.

Kolmakov,  V.I., Anishchenko, O.V., Ivanova, E.A., Gladyshev, M.I. and Sushchik, N.N.  (2008): Estimation of periphytic microalgae gross primary production with DCMU-fluorescence method in Yenisei River (Siberia, Russia). Journal of  Applied Phycology, 20: 289-297.

Kotabová, E., Kaňa, R., Kyseláková, H., Lípová, L. , Novák, O. and Ilík, P. (2008): A pronounced light-induced zeaxanthin formation accompanied by an unusually slight increase in non-photochemical quenching: A study with barley leaves treated with methyl viologen at moderate light. Journal of Plant Physiology, 165: 1563-1571.

Lavergne, J. (1982): Mode of action of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Evidence that the inhibitor competes with plastoquinone for binding to a common site on the acceptor side of Photosystem II. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 682: 345-353.

Myiake, Ch., Yokota, A. (2001): Cyclic flow of electrons within PSII in thylakoid membranes. Plant and Cell Physiology, 42 : 508-515.

Nishio, J. N., Whitmarsh, J. (1993): Dissipation of the proton electrochemical potential in intact chloroplasts (II. The pH gradient monitored by cytochrome f reduction kinetics). Plant Physiology, 101: 89-96.

Pichrtová, M., Remias, D., Lewis, L. A. and Holzinger, A. (2013): Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microbial Ecology, 65:6-83.

Pichrtová, M., Kulichová, J. and Holzinger, A. (2014): Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from Polar Habitats. PlosOne, Volume 9 | Issue 11 | e113137.

Roháček, K., Soukupová, J. and Barták, M. (2008): Chlorophyll fluorescence: A wonderfool tool to study plant physiology and plant stress. In: B. Schoefs (ed.): Plant Cell Compartments - Selected Topics. Research Signpost, Kerala, India, pp. 41-104.

Schansker, G., Tóth, S. Z. and Strasser, R. J. (2005): Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta, 1706: 250-261.

Simis, S. G., Huot, Y., Babin, M., Seppälä, J. and Metsamaa, L. (2012): Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria. Photosynthesis Research, 112: 13-30.

Vavilin, D.V., Tyystjärvi, E.and Aro, E.-M. (1998): Model for the fluorescence induction curve of photoinhibited thylakoids. Biophysical Journal, 75: 503-512.

Vilumbrales,  D.M., Skácelová, K.  and Barták, M. (2013): Sensitivity of Antarctic freshwater algae to salt stress assessed by fast chlorophyll fluorescence transient. Czech Polar Reports, 3: 163-172.

Volgusheva, A. A., Zagidullin, V. E., Antal, T.K.,  Korvatovsky, B.N., Krendeleva, T. E. Paschenko, V. Z. and Rubin, A. B. (2007): Examination of chlorophyll fluorescence decay kinetics in sulfur deprived algae Chlamydomonas reinhardtii. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1767: 559-564.

Vredenberg, W. (2015): A simple routine for quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves. Photosynthesis Research, 124: 87-106. 

Notes: