First results from an experiment excluding three sizes classes of herbivores from tundra vegetation in southern Yamal, Russia

Authors Name:   

Capucine Baubin, Dorothée Ehrich, Virve Ravolainen, Svetlana Sokovina (Abdulmanova), Svetlana Ektova, Natalya Sokolova, Rolf A. Ims, Aleksandr Sokolov

Journal: Czech Polar Reports
Issue: 6
Volume: 2
Page Range: 132-140
No. of Pages: 9
Year: 2016


Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English

Plant-herbivore relationships are important for the functioning of tundra ecosystems. Here, we report the first results from an exclosure experiment that, something very few studies have done, separated the impact of three sizes of herbivores (small, medium and large) on nine functional groups of plants in the low arctic tundra of the Yamal Peninsula (Russia). Herbivore faeces counts in the exclosures and pictures from automatic cameras proved that the experimental setup worked. The majority of plant groups did not respond to exclusion of herbivores, supporting our expectation that vegetation responses in tundra are generally too slow to be measured during one growing season. The plant groups with highest growth rates and palatability (forbs and grasses) increased their biomass in meadows associated to tall willow shrubs when reindeer were excluded. This result was expected based on studies from other arctic regions. Our results also suggested that willow meadows and forb tundra, which are focal habitat for herbivores, are resilient and have the capacity to increase their biomass over a short term. We expect this experiment to provide valuable information on how different plant functional types and habitats with different growing conditions and importance to herbivores respond to relaxed grazing pressure from a variety of tundra herbivores.

Keywords: plant-herbivore relationship, exclosures, point intercept method, Yamal


Aerts, R., Chapin, F. S. (2000): The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: A. H. Fitter, D. G. Raffaelli (eds.): Advances in Ecological research (1st ed., Vol. 30). 55 p.

Bakker, E. S., Olff, H. and Gleichman, J. M. (2009): Contrasting effects of large herbivore grazing on smaller herbivores. Basic and Applied Ecology, 10: 141-150.

Bates, D., Mächler, M., Bolker, B. M. and Walker, S. C. (2015): Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67: 1-48.

Bernes, C., Bråthen, K. A., Forbes, B.C., Speed, J. D. M. and Moen, J. (2015): What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review. Environmental Evidence, 4: 1-26.

Bråthen, K. A., Hagberg, O. (2004): Efficient estimation of plant biomass. Journal of Vegetation Science, 15: 653-660.

Bråthen, K. A., Ims, R. A., Yoccoz, N. G., Fauchald, P., Tveraa, T. and Hausner, V. H. (2007): Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems, 10: 773-789.

Bryant, J. P. (1987): Feltleaf willow-snowshoe hare interactions: Plant carbon/nutrient balance and floodplain succession. Ecology, 68: 1319-1327.

Chapin F. S., Hobbie, S. E., Zhong, H. and Bret-Harte, M. S. (1996): Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science, 7: 374-358.

Cornelissen, J. H. C., Quested, H. M., Gwynn-Jones, D., Van Logstestijn, R. S. P., De Beus, M., Kondratchuk, A., Callaghan, T. V. and Aerts, R. (2004): Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology, 18: 779-786, doi:10.1111/j.0269-8463.2004.00900.x.

Davidson, D. W. (1993): The effects of herbivory and granivory on terrestrial plant succession. Oikos, 68: 23-35.

Díaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F., Milchunas, D. G., Skarpe Ch., Sternberg G. R., Noy-Meir I., Landsberg J., Zhang W., Clark H. and Campbell B. (2007): Plant trait responses to grazing – a global synthesis. Global Change Biology, 13: 313-341, doi: 10.1111/j.1365-2486.2006.01288.x.

Hagenah, N.,  Prins, H. H. T. and Olff, H. (2009): Effects of large herbivores on murid rodents in a South African savanna. Journal of Tropical Ecology, 25: 483-492.

Ims, R. A., Ehrich, D., Forbes, B. C., Huntley, B., Walker, D. A., Wookey, P. A., Berteaux, D., Bhatt, U. S., Bråthen, K. A., Edwards, M. E., Epstein, H. E., Forchhammer, M. C., Fuglei, E., Gauthier, G., Gilbert, S., Leung, M., Menyushina, I. E., Ovsyanikov, N. G., Post, E., Raynolds, M. K., Reid, D. G., Schmidt, N. M., Stien, A., Sumina, O. I. and Van der Wal, R. (2013): Terrestrial Ecosystems. Pages 385-440. In: Meltofte, H. (ed.): Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri.

Lagendijk, G., Page, B. R. and Slotow, R. (2012): Short-term effects of single species browsing release by different-sized herbivores on sand forest vegetation community, South Africa. Biotropica, 44: 63-72.

Oksanen, L., Oksanen, T. (2000): The Logic and Realism of the Hypothesis of Exploitation Ecosystems. The American Naturalist, 155: 703-723.

Olofsson, J., Oksanen, L., Callaghan, T. V., Hulme, P. E., Oksanen, T. and Suominen, O. (2009): Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology, 15: 2681-2693.

Pajunen A. M., Kaarlejarvi, E. M., Forbes, B. C. and Virtanen, R. (2010): Compositional differentiation, vegetation-environment relationships and classification of willow-characterised vegetation in the western Eurasian Arctic. Journal of Vegetation Science, 21: 107-119.

Quested, H. M., Cornelissen, J. H. C., Press, M. C., Callaghan, T. V., Aerts, R., Trosien, F., Riemann, P., Gwynn-Jones, D., Kondratchuk, A. and Jonasson, S. E. (2003): Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology, 84: 3209-3221, doi: 10.1890/02-0426.

Ravolainen, V. T., Bråthen, K. A., Ims, R. A., Yoccoz, N. G., Henden, J.-A. and Killengren, S. T. (2011): Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic and Applied Ecology, 12: 643-653.

Ravolainen, V. T., Bråthen, K. A., Yoccoz, N. G., Nguyen, J. K. and Ims, R. A. (2014): Complementary impacts of small rodents and semi-domesticated ungulates limit tall shrub expansion in the tundra. Journal of Applied Ecology, 51: 234-241.

Ravolainen, V. T., Yoccoz, N. G., Bråthen, K. A., Ims, R. A., Iversen, M. and Gonzales, V. T. (2010): Additive partitioning of diversity reveals no scale-dependent impacts of large ungulates on the structure of tundra plant communities. Ecosystems, 13(1): 157-170.

Skogland, T. (1980): Comparative Summer Feeding Strategies of Arctic and Alpine Rangifer. The Journal of Animal Ecology, 49: 81-98. http://doi.org/10.2307/4278

Soininen, E. M., Ravolainen, V. T., Bråthen, K. A., Yoccoz, N. G., Gielly, L. and Ims, R. A. (2013): Arctic small rodents have diverse diets and flexible food selection. PLoS ONE, 8: 1-13.

Sokolova, N. A., Sokolov, A. A., Sokolov, V. A., Ims, R. A., Skogstad, G., Lecomte, N., Sokolov, V. A., Yoccoz, N. G. and Ehrich, D. (2014): Small rodents in the shrub tundra of Yamal (Russia): Density dependence in habitat use? Mammalian Biology, 79: 306-312, doi: 10.1016/j.mambio.2014.04.004.

Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E., Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J., Melnikov, E. S., Moskalenko, N. G., Talbot, S. S.,Yurtsev, B. A. and the other members of the CAVM Team (2005): The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 16: 267-282, doi: 10.1111/j.1654-1103.2005.tb02365.x.

White, R. G., Trudell, J. (1980): Habitat Preference and Forage Consumption by Reindeer and Caribou near Atkasook, Alaska. Arctic and Alpine Research, 12: 511-529.

Wigley, B. J., Fritz, H., Coetsee, C. and Bond, W. J. (2014): Herbivores shape woody plant communities in the Kruger National Park: lessons from three long-term exclosures. Koedoe, 56: 1-12, doi: 10.4102/koedoe.v56i1.1165.


Web sources

[WP1]   WorldClim - Global Climate Data, Free climate data for ecological modeling and GIS, http://www.worldclim.org