Title:

Temperature optima for growth and photosynthetic processes in Trebouxia erici isolated from an Antarctic lichen and cultivated in a temperature gradient

Authors Name:   

Timm Bayer, Nıevas Vıñals Alba

Journal: Czech Polar Reports
Issue: 7
Volume: 1
Page Range: 34-44
No. of Pages: 11
Year: 2017
DOI:

10.5817/CPR2017-1-4

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

The temperature optimum for photosynthesis and growth of natural populations of Trebouxia erici isolated from an Antarctic lichen (Usnea antarctica) was determined using a long-term cultivation (26 days) at different temperatures. Several chlorophyll fluorescence parameters were used in T. erici cultivated in a liquid medium to assess the effect of cultivation temperature (0, 10, 20 and 30oC). Analysis of time courses of the capacity of photosynthetic processes in PS II (FV/FM), effective quantum yield of photosystem II (FPSII), relative fluorescence decline ratio (RFd), and quenching of background chlorophyll fluorescence (qF0) revealed that optimum temperature is between 10 to 20°C. Biomass production evaluated as a total chlorophyll production after 26 days of cultivation was maximal at 20°C. The results are discussed in relation to the data reported by other literature sources for Trebouxia sp. and other algae isolated from chlorolichens.

 

Keywords: alga, Antarctica, chlorolichens, chlorophyll fluorescence, stress
 

References:

Ahmadjian, V. (1993): The Lichen Symbiosis. John Wiley & Sons, New York. 250 p.

Álvarez, R., del Hoyo, A., García-Breijo, F., Reig-Armiñana, J., del Campo, E.M., Guéra, A., Barreno, E. and Casano, L.M. (2012): Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. Journal of Plant Physiology, 169: 1797-1806.

Balarinová, Váczi, P., Barták, M., Hazdrová, J. and Forbelská, M. (2013): Temperature-dependent growth rate and photosynthetic performance of Antarctic symbiotic alga Trebouxia sp. cultivated in a bioreactor. Czech Polar Reports, 3: 19-27.

Barták, M., Váczi, P., Hájek, J. and Smykla, J. (2007): Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31: 47-51.

Cao, S., Zhang, J., Zheng, H., Liu, Ch. and Zhou, Q. (2015): Photosynthetic performance in Antarctic lichens with different growth forms reflect the diversity of lichenized algal adaptation to microhabitats. Polish Polar Research, 36: 175-188.

Del Hoyo, A., Alvarez, R., del Campo, E.M., Gasulla, F., Barreno, E. and Casano, L.M. (2011): Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Annals of Botany, 107: 109-18.

Domaschke, S., Vivas, M., Sancho, L.G. and Printzen, C. (2013): Ecophysiology and genetic structure of polar versus temperate populations of the lichen Cetraria aculeata. Oecologia, 173 (3): 699-709, doi:10.1007/s00442-013-2670-3.

Fodorpataki, L., Geráj, J., Deák, H., Barna, S. and Kovács, B. (2013): Influence of inorganic nutrients on parameters of biomass production in a local strain of the microalga Scenedesmus Acuminatus. Contributii Botanice, XLVIII: 83-94.

Fodorpataki, L., Keresztes, Z.G., Bartha, C. and Barna, S. (2010): Bioindicator of water pollution in the somes river using biochemical and physiological parameters of the green alga Scenedesmus opoliensis P. Richter. Egyptial Journal of Phycology, 11: 49-68.

Fogliano, V., Andreoli, C, Martello, A., Caiazzo, M., Lobosco, O., Formisano, F., Carlino, P. A., Meca, G., Graziani, G., Di Martino Rigano, V., Vona, V., Carfagna, S. and Rigano, C. (2010): Functional ingredients produced by culture of Koliella antarctica. Aquaculture, 299: 115-120.

Friedman, E.I., Sun, H.J. (2005): Communities Adjust their Temperature Optima by Shifting Producer-to-Consumer Ratio, Shown in Lichens as Models: I. Hypothesis. Microbial Ecology, 49: 523-527.

Gachon, C.M.M., Kupper, H., Kupper, F.C. and Šetlík, I. (2006): Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). European Journal of Phycology, 41: 395-403.

Gasulla, F., Herrero, J., Esteban-Carrasco, A., Zapata, J.M. and Guéra, A. (2010): Photosynthesis in Lichen:Light Reactions and Protective Mechanisms. In: M. Najafpour (ed.): Advances in Photosynthesis - Fundamental Aspects. pp. 149-174.

Georgieva, K., Lichtenthaler, H. K. (2006): Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica, 44: 569-578.

Hájek, J., Váczi, P. and Barták, M. (2009): Photosynthetic electron transport at low temperatures in the green algal foliose lichens Lasallia pustulata and Umbilicaria hirsuta affected by manipulated levels of ribitol. Photosynthetica, 47: 199-205.

Hájek, J., Váczi, P., Barták, M. and Jahnová, L. (2012): Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. Cryobiology, 64: 215-222.

Hájek, J., Barták, M., Hazdrová, J. and Forbelská, M. (2016): Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. Cryobiology, 73: 329-334.

Kosugi, M., Arita, M., Shizuma, R., Moriyama, Y., Kashino, Y., Koike, H. and Satoh, K. (2009): Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiology, 50: 879-88.

Kvíderová, J., Lukavský, J. (2003): The cultivation of Pheodactylum tricornutum in crossed gradients of temperature and light. Algological Studies, 110: 67-80.

Lichtenthaler, H.K., Rinderle, U. (1988): The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critical Reviews in Analytical Chemistry, 19: 329-383.

Marečková, M., Barták, M. (2016): Effects of short-term low temperature stress on chlorophyll fluorescence transients in Antarctic lichen species. Czech Polar Reports, 6: 54-65.

Ocampo-Friedmann, R., Meyer, M.A., Chen, M. and Friedmann, E.I. (1988) Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms. Polarforschung, 58: 121-124.

Pererra-Castro, A.V., Brito, P. and González-Rodríguez, A.M. (2017): Changes in thermic limits and acclimation assessment for an alpine plant by chlorophyll fluorescence analysis: Fv/Fm vs. Rfd. Photosynthetica, 55: accepted for press.

Rodea-Palomares, I., Gonzalo, S., Santiago-Morales, J., Leganés, F., García-Calvo, E., Rosal, R., Fernández-Pinas, F. (2012): An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquatic Toxicology, 122–123: 133-143.

Roháček, K. (2002): Chlorophyll Fluorescence Parameters: The Definitions, Photosynthetic Meaning, and Mutual Relationships. Photosynthetica, 40: 13-29.

Rosenqvist, E., van Kooten, O. (2003): Chlorophyll fluorescence: A general description and nomenclature. In: J. R. de Ell, P. M. A. Toivonen (eds.): Practical Applications of Chlorophyll Fluorescence in Plant Biology, Springer/Kluwer, New York, pp. 31-77.

Sadowsky, A., Mettler-Altmann, T.  and Ott, S. (2016): Metabolic response to desiccation stress in strains of green algal photobionts (Trebouxia) from two Antarctic lichens of southern habitats. Phycologia, 55: 703-714.

Seaburg, K. G., Parker, B. C, Wharton, R. A. and Simmons, G. M. (1981): Temperature-growth responses of algal isolates from Antarctic oases. Journal of Phycology, 17: 353-360.

Sehnal, L., Váczi, P. and Barták, M. (2014): Effect of temperature and increased concentration of CO2 on growth and photosynthetic activity of polar alga Trebouxia sp. Czech Polar Reports, 4: 47-56.

Schofield, E., Ahmadjian, V. (1972): Field observations and laboratory studies of some Antarctic cold desert cryptogams. In: G. Llano (ed.): Antarctic Terrestrial Biology, Antarctic Research Series, Vol. 20, American Geophysical Union, Washington, DC, pp. 97-142.

Stibal, M., Elster, J. (2005): Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biology, 28: 558-567.

Teoh, M.-L., Chu, W.-L., Marchand, H. and Phang, S.-M. (2004): Influence of culture  temperature on the growth, biochemical composition and fatty acid profiles in six Antarctic  microalgae. Journal of Applied Phycology, 16: 421-430.

Tschermak-Woess, E., Friedmann, E. I. (1984): Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica. Phycologia 23 (4): 443-454.

Tuba, Z., Csintalan, Z. and Proctor, M.C.F. (1996): Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day concentration. New Phytologist, 133: 353-361.

Váczi, P., Barták, M. (2006): Photosynthesis of lichen symbiotic alga Trebouxia erici as affected by irradiance and osmotic stress. Biologia Plantarum, 50 (2): 257-264.

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144: 307-313.

Notes: