Title:

Short-term responses of primary processes in PS II to low temperature are sensitively indicated by fast chlorophyll fluorescence kinetics in Antarctic lichen Dermatocarpon polyphyllizum

Authors Name:   

Michaela Marečková, Miloš Barták

Journal: Czech Polar Reports
Issue: 7
Volume: 1
Page Range: 74-82
No. of Pages: 9
Year: 2017
DOI:

10.5817/CPR2017-1-8

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

In this study, we investigated the effects of low temperature on the fast chlorophyll fluo-rescence transient (OJIP) and OJIP-derived parameters in chlorolichen Dermatocarpon polyphyllizum expossed to a gradually decreasing temperature (22°C, 18°C, 14°C, 12°C, 10°C, 7°C and 4°C). The segments of lichen thalli were exposed to a certain temperature either in dark- and light-adapted state for 10 minutes in order to evaluate the effects on chlorophyll fluorescence parameters. The initial photochemical phase of the transient (O-J) due to reduction of the primary quinone acceptor (QA) was found temperature dependent. The K-step was apparent for the samples measured at the temperature above 12°C, but not below 10oC in light-adapted lichen thalli. With the thallus temperature decrease, majority of the chlorophyll fluorescence parameters derived from OJIP (ET0/RC, Psi_0, and DI0/RC) showed no change in light-adapted samples but a decrease in dark-adapted samples. The effects of dark- / light-adaptation of the lichen samples on the OJIP and OJIP-derived parameters was attributed to the differences in production/utilization of high-energy products of primary photochemical processes of photosynthesis in dark- and light-adapted state, respectively. The other parameters (ABS/RC, TR0/RC) showed a decrease with thallus temperature decrease both in light- and dark-adapted samples. The results suggest that fast chlorophyll fluorescence trasient is an useful tool to investigate temperature-dependent changes in photosystem II in chlorolichens, their photobionts, respectively.

 

Keywords:

chlorophyll fluorescence, fast kinetics, OJIP, K-step, James Ross Island, temperature stress
 

References:

Balarinová, K., Barták, M., Hazdrová, J., Hájek, J. and Jílková J. (2014): Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica, 52: 538-547.

Barták, M., Trnková, K., Hansen, E.S., Hazdrová, J., Skácelová, K., Hájek, J. and Forbelská, M. (2015b): Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biologia Plantarum, 59 (2): 357-365.

Barták, M., Váczi, P., Stachoň, Z. and Kubešová, S. (2015a): Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar Reports, 5: 75-87.

Brestič, M., Živčák, M. (2013): PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In: G. R. Rout, A. B. Das (eds.): Molecular stress physiology of plants. Springer Dordrecht, pp. 87-131.

Brestič, M., Živčák, M., Olšovská, K. and Repková, J. (2013): Involvement of chlorophyll a fluorescence analyses for identification of sensitiveness of the photosynthetic apparatus to high temperature in selected wheat genotypes. Photosynthesis: Research for Food, Fuel and Future, 15th International Conference on Photosynthesis, pp. 510-513, doi: 10.1007/978-3-642-32034-7_108.

Fontaine, K.M., Beck, A., Stocker-Wörgötter, E. and Piercey-Normore, M. D. (2012): Photobiont relationships and phylogenetic history of Dermatocarpon luridum var. luridum and related Dermatocarpon species. Plants, 1: 39-60.

Guissé, B., Srivastava, A. and Strasser, R. J. (1995): The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Archives des Sciences Genéve, 48: 147-160.

Hájek, J., Barták, M. and Gloser, J. (2001): Effects of thallus temperature and hydration on photosynthetic parameters of Cetraria islandica from contrasting habitats. Photosynthetica, 39: 427-435.

He, Y., Zhu, Z., Yang, J., Ni, X. and Zhu, B. (2009): Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes aktivity. Environmental and Experimental Botany, 66: 270-278.

Hendrickson, L., Ball, M. C., Osmond, C. B., Furbank, R. T. and Chow, W. S. (2003): Assessment of photoprotection mechanisms of grapevines at low temperature. Functional Plant Biology, 30: 631-642.

Chen, S., Yang, J., Zhang, M., Strasser, R. J. and Qiang, S. (2016): Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environmental and Experimental Botany, 122: 126-140.

Ilík, P., Schansker, G., Kotabová, E., Váczi, P., Strasser, R. J. and Barták, M. (2006): A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochimica et Biophysica Acta, 1757: 12-20.

Martinazzo, E. G., Ramm, A., and Macarin, M. A. (2012): The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Brazilian Journal of Plant Physiology, 24: 237-246.

Mathur, S., Jajoo, A., Mehta, P. and Bharti, S. (2011): Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 13: 1-6. 

Medina, M.G., Avalos-Chacon, R. (2015): Physiological performance of a foliose macrolichen Umbilicaria antarctica as affected by supplemental UV-B treatment. Czech Polar Reports,      5 (2): 222-229.

Mishra, A., Hájek, J., Tuháčková, T., Barták, M. and Mishra, K. B. (2015): Features of chlorophyll fluorescence transients can be used to investigate low temperature induced effects on photosystem II of algal lichens from polar regions. Czech Polar Reports, 5 (1): 99-111.

Nash, H. T., Ryan, D. B., Diederich, P., Gries, C. and Bungartz, F. (2004): Lichen flora of the Greater Sonoran Desert Region Vol. 2. – Lichens Unlimited, Arizona State University, Tempe, Arizona, 742  p.

Oukarroum, A., Madidi , S.E., Schansker , G. and Strasser, R.J. (2007): Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60: 438-446.

Oukarroum, A., Strasser, R. J. and Schansker, G. (2012): Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynthesis Research, 111: 303-314.

Řeháková, H. (1968): Lišejníkové řasy z rodu Trebouxia, Diplosphaera a Myrmecia. Kand. Dis., Diplomová práce. Univerzita Karlova v Praze, Fakulta Přírodovědecká.

Schansker, G., Tóth, S. Z., and Strasser, R. J. (2006): Dark-recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta, 1757: 787-797.

Schansker, G., Yuan, Y., and Strasser, R. J. (2008): Chl a fluorescence and 820 nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: a comparison. In: J. F. Allen, B. Osmond, J. H. Golbeck, E. Gantt (eds.): Photosynthesis. Energy from the sun. Springer, Dordrecht, pp. 951-955.

Smethurst, Ch. F., Garnett, T. and Shabala, S. (2005): Nutritional and chlorophyll fluores-cence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant and Soil, 270: 31-45.

Srivastava, A., Strasser, R. J. (1996): Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 148: 445-455.

Stirbet, A., Govindjee (2012): Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynthesis Research, 113: 15-61.

Stirbet, A., Riznichenko, G. Yu., Rubin, A. B. and Govindjee (2014): Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry (Moscow), 79 (4): 291-323.

Strasser, R.J., Srivastava, A. and Govindjee (1995): Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 61(1): 32-42.

Strasser, R.J., Srivastava, A. and Tsimilli-Michael, M. (2000): The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: M. Yunus, U. Pathre, P. Mohanty (eds.): Probing Photosynthesis: Mechanism, Regulation and Adaptation Taylor and Francis, UK, Chapter 25, pp. 445-483.

Thüs, H., Muggia, L., Pérez-Ortega, S., Favero-Longo, S. E., Joneson, S., O’Brien, H., Nelsen, M. P., Duque-Thüs, R., Grube, M., Friedl, T., Brodie, J., Andrew, C. J., Lücking, R., Lutzoni, F. and Gueidan, C. (2011): Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology, 46: 399-415.

Xue, W., Li, X. Y., Lin, L. S., Wang, Y. J. and Li, L. (2011): Effects of elevated temperature on photosynthesis in desert plant Alhagi sparsifolia S. Photosynthetica, 49 (3): 435-447.

Yamane, Y., Kashino, Y., Koike, H. and Satoh, K. (1997): Increases in the fluorescence Fo level and reversible inhibition of Photosystem II reaction center by high temperature treatments in higher plants. Photosynthesis Research, 52: 57-64.

Yang, Y., Yan, CH.-Q., Cao, B.-H., Xu, H.-X., Chen, J.-P. and Jiang, D.-A. (2007): Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. Physiologia Plantarum, 129: 658-669.

Żurek, G., Rybka, K., Pogrzeba, M., Krzyżak, J. and Prokopiuk, K. (2014): Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLOS ONE, 9 (3): e91475.

Notes: