Title:

Vertical electric resistivity sounding of natural and anthropogenically affected cryosols of Fildes Peninsula, Western Antarctica

Authors Name:   

Evgeny Abakumov

Journal: Czech Polar Reports
Issue: 7
Volume: 2
Page Range: 109-122
No. of Pages: 14
Year: 2017
DOI:

10.5817/CPR2017-2-11

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

Natural and anthropogenically-affected Cryosols of the Fildes Peninsula (King George Island, NW Antarctic Peninsula) from the surroundings of Russian polar station Bellingshausen were investigated by vertical electric sounding. The aim of the study was to asses the thawing depth and active layer thickness. Natural Turbic Croysols showed lesser thickness of active layer than the soils of former reclaimed wastes disposals. Average thickness of the active layer was 0.3-0.4 m in natural soil and 1.3-1.4 m in anthropogenically-affected ones. This was affected by the change in the temperature regime of soils, and related to the destruction of upper organic layer and mechanical disturbance of the active soil layer on the waste polygons. It was shown, that the use of vertical electric sounding methodology in the soil surveys is useful for the identification of the permafrost depth without digging of soil pit. This method allows the identification of soil heterogeneity, because the electric resistivity (ER) values are strongly affected by soil properties. ER also intensively changes on the border of different geochemical regimes, i.e. on the border of the active layer and the permafrost. The lowest ER values were found for the upper organic horizons, the highest for permafrost table. Technogenic Superficial Formations exhibit lower resistivity values than natural soils. Therefore, disposition of WP and disturbance of the soil surface, results in permafrost degradation and an increase in the active layer thickness.

 

Keywords: soils, Antarctic, Vertical Electric Sounding (VERS), Wastes Polygons (WP)
 

References:

Abakumov, E. V. (2010): Particle-size distribution in soils of West Antarctica. Eurasian Soil Science, 43(3): 297-304.

Abakumov, E. V. (2010): The sources and composition of humus in some soils of West Antarctica. Eurasian Soil Science, 43(5): 499-508.

Abakumov, E. V., Andreev, M. P. (2011): Temperature regime of humus horizons of the King-George Island, Western Antarctica. Biological Communications, 2: 129-133.

Abakumov, E. V., Lodygin, E. D., Gabov, D. A. and Krylenkov, V. A. (2014): Polycyclic aromatic hydrocarbons content in Antarctica soils as exemplified by the Russian polar stations. Gigiena i Sanitariia, 1:  31-35.

Abakumov, E. V., Mukhametova, N. (2014): Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations. Solid Earth, 5: 705-712.

Abakumov, E. V., Pomelov, V. N., Vlasov, D. Y. and Krylenkov, V. A. (2008): Morphological organization of soils in Western Antarctica. Vestn. St.-Peterb. Univ., Ser. 3: Biol., No. 3: 102-115.

Abakumov, E. V., Parnikoza, I. Y., Lupachev, A. V., Lodygin, E. D., Gabov, D. N. and Kunakh, V. A. (2015): Content of polycyclic aromatic hydrocarbons in soils of Antarctic stations regions.  Gigiena i sanitaria, 7: 20-25.

Abakumov, E. V., Tomashunas, V. (2016): Electric resistivity of soils and upper permafrost layer of the Gydan Peninsula. Polarforschung, 86(1): 27-34.

Abakumov, E. V., Tomashunas, V. and Alekseev, I. (2017): Profiles of vertical electric resistivity of selected soils of Yamal autonomus region. Eurasian Soil Science. (accepted in press).

Abakumov, E. V., Trubetskoj, O., Demin, D. and Trubetskaya, O. (2014): Electrophoretic evaluation of initial humification in organic horizons of soils of western Antarctica. Polarforschung, 83(2): 73-82.
Abramov, A. A., Sletten, R. S.,  Rivkina, E., Mironov, V. and Gilichinsky, D. A. (2011): Geocryological conditions of Antarctica. Earth Cryosphere, 15(3): 3-19.

Alekseev, I., Abakumov, I. and Shamilishvily, G. (2016): Vertical electric sounding of soil and permafrost layers of the Eastern macro slope of the Polar Urals and the surroundings of Erkuta river.  Agrophysics, 3: 1-6.

Amaro, E., Padeiro, A., de Ferro, A. M., Mota, A. M., Leppe, M., Verkulich, S., Hughes, K. A, Peter, H. U. and Canário, J. (2016): Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Marine Pollution Bulletin, 97 (1-2): 523-527, http://dx.doi.org/10.1016/j.marpolbul.2015.05.018.

Balks, M. R., Paetzold, R. F., Kimble, J. M., Aislabie, J. and Campbell, I. B. (2002): Effects of hydrocarbon spills on the temperature and moisture regimes of Cryosols in the Ross Sea region. Antarctic Science, 14(4): 319-326, doi: 10.1017/S0954102002000135.

Beyer, L., Pingpank, K., Wriedt, G. and Bölter, M. (2000): Soil formation in coastal continental Antarctica (Wilkes Lands). Geoderma, 95(3-4): 283-304.

Blumme, H-P, Schneider, D. and Bölter, M. (1996): Organic matter accumulation in and podzolisation of Antarctic soils. Journal of Plant Nutrition and Plant Science, 159(4): 411-412.

Bockheim, J. G. (ed). (2015): The Soils of Antarctica. Springer. 322 p., ISBN 978-3-319-05497-1.

Bockheim, J. G., Hall, K. (2002): Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. South African Journal of Science, 98: 82-90.

Bölter, M. (2011): Soil development and soil biology on King George Island, Maritime Antarctic. Polish Polar Research, 32(2): 105-116.

Campbell, I. B., Claridge, G.G.C. (1987): Antarctica: Soils, Weathering Processes, and Environment. Elsevier, Amsterdam. 368 p.

Casanova Katny, A. M., Cavieres, L. A.  (2012): Antarctic moss carpets facilitate growth of  Deshampsia antarctica but not its survival. Polar Biology, 35: 1869-1878.

Convey, P. (2003): Maritime Antarctic climate Change: Signals from terrestrial biology. Antarctic Research Series, 79: 145-158.

Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D. and Hollands, J. (2006): Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71(6): B231-B239. https://doi.org/10.1190/1.2360184.

Gibas, J., Rachlewicz, G. and Szczucinski, W. (2005): Application of DC resistivity soundings and geomorphological surveys in studies of modern Arctic glacier marginal zones, Petuniabukta, Spitsbergen. Polish Polar Research, 26(4): 239-258.

Gilichinskiy, D., Abakumov, E., Abramov, A., Fyodorov-Davydov, D., Goryachkin, S., Lupachev, A.,  Mergelov, N. and Zazovskaya, E. (2010): Soils of mid and low antarctic: Diversity, geography, temperature regime. Proceedings of the 19th World Congress of Soil Science; Soil Solutions for a Changing World; ISBN 978-0-646-53783-2; Published on DVD; http://www.iuss.org; Symposium WG. 1.4.; Cold soils in a changing world; 2010 Aug 1-6. Brisbane, Australia: IUSS; pp. 32-35.

Glazovskaya, M. A. (1958): Weathering and initial soil formation in Antarctica. Nauch Dokl Vyssh Shkoly Geol Geogr Nauki, 1: 63-76.

Hauck, C., Mühll, D. V. and Maurer, H. (2003): Using DC resistivity tomo­graphy to detect and characterize mountain permafrost. Geophysical Prospecting, 51: 273-284, doi:10.1046/j.1365-2478.2003.00375.x.

Ilieva, R., Vergilov, Z. and Groseve, M. (2003): Micromorpology of organic mаtter in the Antarctic soils. Bulgarian Journal of Ecological Science, 304: 52-54.

Ikeda, A. (2006): Combination of conventional geophysical methods for sounding the composition of rock glaciers in the Swiss Alps. Permafrost and Periglacial Processes, 17: 35-48.

Karlık, G., Kaya, M. A.(2001): Investigation of groundwater contamination using electric and electromagnetic methods at an open waste-disposal site: a case study from Isparta, Turkey.  Environmental Geology, 40: 725-731.

Kasprzak, M. (2015): High-resolution electrical resistivity tomography applied to patterned ground, Wedel Jarlsberg Land, south-west Spitsbergen. Polar Research, 34: 25678.

Kirtsideli, I. Yu., Vlasov, D., Abakumov, E. V. and Gilichinsky, D. A. (2010): Diversity and enzyme activity of microfungi from Antarctic soils. Mikologiya I Fitopatologiya, 44(5): 387-397.

Kubiena, W. L. (1970): Micro morphologic investigations of Antarctic soils. Antarctic Journal, 5:  105-106.

Lee, Y. II, Lim, H. S. and Yoon, H. II (2004): Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: Implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta, 68(21): 4319-4333, https://doi.org/10.1016/j.gca.2004.01.020.

Lu, Z., Cai, M., Wang, J., Yang, H. and He, J. (2012): Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environ-mental Monitoring and Assessment, 184(11): 7013-7021.

Magnin, E., Deline P., Ravanel, L., Noetzli, J. and Pogliotti, P. (2015): Thermal charac-teristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3 842 m a.s.l). The Cryosphere, 9: 109-121, https://doi.org/10.5194/tc-9-109-2015.

Marchenko, M. N. (ed). (2007): Manual on Vertical Electric Sounding. - Moscow, Moscow State University, pp. 1-30.

McGinis, L.D., Jensen, T. E. (1971): Permafrost-hydrogeologic regimen in two ice-free valleys, antarctica, from electrical depth sounding. Quaternary Research, 1: 389-409.

Mergelov, N. S., Goryachkin, S. V., Shorkunov, I. G., Zazovskaya, E. P. and Cherkinsky, A. E. (2012): Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica. Eurasian Soil Science, 45(10): 901-917, https://doi.org/10.1134/S1064229312100067.

Michel, R. F. M., Schaefer, C. E. G. R., Simas F. M. B., Francelino, M. R., Fernandes-Filho, E. I., Lyra, G. B. and Bockheim, J. G (2014): Active-layer thermal monitoring on the Fildes  Peninsula, King George Island, maritime Antarctica. Solid Earth, 5: 1361-1374, https://doi.org/ 10.5194/se-5-1361-2014.

Ohashi, K., Koike, T., Takenaka, S. and Umemura, J. (2012): Study on Applicability of Electric Sounding for Interpretation of the Internal Structure of Glacial Moraines. Global Environmental Research, 16: 51-58.

Padeiro, A., Amaro, E., dos Santos, M. M. C., Gomes, M. S, Leppe, M., Verkulich, S., Hughes,  K. A., Peter, H-U and Canário, J. (2016): Trace element contamination and availability in the Fildes Peninsula, King George Island, Antarctica. Environmental Science: Processes & Impacts, 18: 648-657.

Parnikoza, I., Korsun, S., Kozeretska, I. and Kunakh, V. A (2011): Discussion Note on Soil Development under the Influence of Terrestrial Vegetation at two Distant Regions of the Maritime Antarctic. Polarforschung, 80(3): 181-185, hdl:10013/epic.38394.d001.

Peter, H.-U., Büßer/Braun, Ch., Mustafa, O. and Pfeiffer, S. (2008): Risk assessment for the Fildes Peninsula and Ardley Island and the development of management plans for designation as Antarctic Specially Protected or Managed Areas. Jena University, Jena, pp. 1-344.

Pettersson, J. K., Nobes, D. C. (2003): Environmental geophysics at Scott Base: ground penetrating radar and electromagnetic induction as tools for mapping contaminated ground at Antarctic research bases. Cold Regions Science and Technology, 37(2): 187-195, 00037-5.

Pozdnyakov, A. I. (2008): Electrical parameters of soils and pedogenesis. Eurasian Soil Science, 10: 1050-1058.

Pozdnyakov, A. I., Pozdnyakova, L. A. and Pozdnyakova, D. A. (1996): Constant Electric Fields in Soils. 1-360.

Rakusa-Sushevskiy, S. (1998): The past and present of King-George Island (South-Shetland Islands, Antartcica). Polish Polar Research,  19: 249-252.

Samouëlian, A., Cousin, I.,  Tabbagh, A.,  Bruand, A. and Richard G. (2005): Electrical resistivity survey in soil science: a review. Soil and Tillage research, 83: 173-193, https://doi. org/10.1016/j.still.2004.10.004

Scott, W., Sellmann, P. and Hunter, J. (1990): Geophysics in the study of permafrost.- Geotechnic. Environment. Geophys., ed. S.Ward (ed.) Soc. Explor. Geophys,Tulsa, 355-384.

Shaefer, C. E. G. R., Simas, F. N. B., Gilkes, R. J., Mathison, Ch., da Costa, L. M. and  Albuquerque, M. A. (2008): Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. Geoderma, 144: 104-115, https://doi.org/10.1016/j.geoderma.2007.10.018.

Smernikov, S. A., Pozdnyakov, A. I. and Shein, E. V. (2008): Assessment of soil flooding in cities by electrophysical methods. Eurasian Soil Science, 10: 1059-1065.

Turu I Michels V., Ros Visus X. (2013): Geophysical survey carried out in the Hansbreen glacial front (Hornsund, SW Spitzbergen): Surface Nuclear Magnetic Resonance (SNMR), Magnetic  susceptibility of rocks and Electrical Resistivity facies: Permafrost identification and subglacial aquifers.- IV Congreso Ibérico de la I.P.A. Núria (Vall de Ribes, Pirineo oriental), junio 2013.

Vanhala, H., Lintinen, P. and Ojala, A. (2009): Electrical Resistivity Study of Permafrost on Ridnitšohkka Fell in Northwest Lapland, Finland. Geophysica, 45: 103-118.

Vlasov, D. Y., Abakumov, E. V. (2005): Lithosols of King George Island. Western Antarctica. Eurasian Soil Science, 38(7): 681-687.

 
 

Web sources / Other sources


[1] World Reference Base of Soil Resources. (2014) World soil resources report, No 106, FAO, Rome.

 
Notes: