Title:

Lithostratigraphy and petrology of Lachman Crags and Cape Lachman lava-fed deltas, Ulu Peninsula, James Ross Island, north-eastern Antarctic Peninsula: Preliminary results

Authors Name:   

Şafak Altunkaynak, Ercan Aldanmaz, Işıl Nur Güraslan, Ayşe Zeynep Çalışkanoğlu, Alp Ünal, Daniel Nývlt

Journal: Czech Polar Reports
Issue: 8
Volume: 1
Page Range: 60-83
No. of Pages: 24
Year: 2018
DOI:

10.5817/CPR2018-1-5

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

This paper presents the preliminary results regarding the lithostratigraphy, petrography and petrology of James Ross Island Volcanic Group dominating the Lachman Crags and Cape Lachman lava-fed deltas in the Ulu Peninsula, James Ross Island north-eastern Antarctic Peninsula. Studied lava-fed deltas were produced via Late Miocene to Pleistocene sub-marine and sub-glacial volcanism and made up four main lithofacies: a- bottomset pillow lavas, peperites and associated volcanoclastic/siliciclastic deposits; b- foreset-bedded hyaloclastite breccias; c- intrusions (feeder dykes, sills, and plugs) and d- topset subaerial lavas. Collectively these lithofacies record the transition from an effusive subaqueous to an effusive subaerial eruption environment. All lava samples and dykes from bottomset, foreset and topset lava-fed delta associations are olivine-phyric alkali basalts and are mineralogically and geochemically homogeneous. These eruptive products display significant enrichments in alkali contents and have ocean island basalt (OIB)-type, intra-plate geochemical signatures characterized by enrichments in all highly to moderately incompatible trace elements relative to basaltic rocks from ocean ridge settings. Volcanic products from a number of different eruptive periods display limited variations in major and trace element relative abundances, indicating derivation from a relatively homogeneous mantle source. The results of quantitative modelling of geochemical data is consistent with the view that the primary melts from which these mafic alkaline rocks were originated are the products of relatively small degrees (~3-7%) of partial melting of a volatile-bearing, metasomatized mantle source. The magmatism is likely the result of extension-driven mantle upwelling.

 

Keywords: Antarctica, James Ross Island, Lava-fed delta, lithostratigraphy, petrology
 

References:

Aldanmaz, E., Köprübaşı, N., Gürer, Ö. F., Kaymakçı, N. and Gourgaud, A. (2006): Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos, 86: 50-76.

Barker, P. F. (1982): The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: Ridge crest-trench interactions. Journal of the Geological Society, London, 139: 787-801.

Barker, D. H. N., Christenson, G. L., Austin, J. A. and Dalziel, I. W. D. (2003): Backarc basin evolution and cordilleran orogenesis: Insights from new ocean-bottom seismograph refraction profiling in Bransfield Strait, Antarctica. Geology, 31: 107-110.

Bastías, J., Hervé, F., Fuentes, F., Schilling, M., Poiron, A. and Gutiérrez, F. (2012): Mantle xenoliths found at Santa Martha cove, James Ross Island, Antarctica. 13° Congreso Geológico Chileno, Actas: 365-367, Antofagasta.

Bibby, J. S. (1966): The stratigraphy of part of north-east Graham Land and the James Ross Island group. British Antarctic Survey Scientific Reports, No. 53: pp. 1-37.

Boynton, W.V. (1984): Geochemistry of the rare earth elements: meteorite studies. In: P. Henderson (ed.):  Rare Earth Element Geochemistry. Elsevier, pp. 63-114.

Calabozo, F. M., Strelin, J. A., Orihashi, Y., Sumino, H. and Keller, R. A. (2015): Volcano–ice–sea interaction in the Cerro Santa Marta area, northwest James Ross Island, Antarctic Peninsula. Journal of Volcanology and Geothermal Research, 297: 89-108.

Chen, H., Xia, Q. K., Ingrin, J., Deloule, E. and Bi, Y. (2017): Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction. Earth and Planetary Science Letters, 459: 208-220.

Crame, J. A., Pirrie, D., Riding, J. B. and Thomson, M. R. A. (1991): Campanian–Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. Journal of the Geological Society, London, 148: 1125-1140.

Dasgupta, R., Hirschmann, M. M. and Stalker, K. (2006): Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogites + CO2 and genesis of silica-undersaturated ocean island lavas. Journal of Petrology, 47: 647-671.

Day, J. M. D., Pearson, D. G., Macpherson, C. G., Lowry, D. and Carracedo, J.-C. (2009): Pyroxenite-rich mantle formed by recycled oceanic lithosphere: oxygen–osmium isotope evidence from Canary Island lavas. Geology, 37: 555-558.

del Valle, R. A. and Scasso, R. A. (2004): Límite de la cuenca Larsen en la península Tabarin, Antártida. Revista de la Asociación Geológica Argentina, 59(1): 38-44.

Edwards, B. R., Russell, J. K. and Anderson, R. G. (2002): Subglacial, phonolitic volcanism at Hoodoo Mountain volcano, northwestern Canadian Cordillera. Bulletin of Volcanology, 64: 254-272.

Hambrey, M. J., Smellie, J. L., Nelson, A. E. and Johnson, J. S. (2008): Late Cenozoic glacier volcano interaction on James Ross Island and adjacent areas, Antarctic Peninsula region. Geological Society of America Bulletin, 120 (5/6): 709-731.

Herron, E. M., Tucholke, B. E. (1976): Sea-floor magnetic patterns and basement structure in the southeastern Pacific. In: C.D. Hollister et al. (eds.): Initial Reports of the Deep Sea Drilling Project, 35, U.S. Goverment Printing Office, Washington D.C., pp. 263-278.

Hofman, A. W. (1997): Mantle geochemistry: the message from oceanic volcanism. Nature, 385:219-229.

Irvıne, T. N., Baragar, W. R. A. (1971): A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 448-523.

Janoušek, V., Farrow, C. M. and Erban, V. (2006): Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47 (6): 1255-1259.

Jones, J. G., Nelson, P. H. H. (1970): Flow of basalt lava from air into water. Its structural expression and stratigraphic significance. Geological Magazine, 107: 13-19.

Jonkers, H.A., Lirio, J.M., del Valle, R.A. and Kelley, S.P. (2002): Age and environment of Miocene–Pliocene glaciomarine deposits, James Ross Island, Antarctica. Geological Magazine, 139: 577-594.

Jung, S. Pfänder, J.A. Brauns, M. and Maas, R. (2011): Crustal contamination and mantle source characteristics in continental intra-plate volcanic rocks: Pb, Hf and Os isotopes from central European volcanic province basalts. Geochimica et Cosmochimica Acta, 75: 2664-2683.

Kımura, J.-I., Gıll, J. B., Skora, S., van Keken, P. E. and Kawabata H. (2016): Origin of geochemical mantle components: Role of subduction filter. Geochemistry, Geophysics, Geosystems, 17: 3289-3325, doi:10.1002/2016GC006343.

Kıseeva, E. S., Lıtasov, K. D., Yaxley, G. M., Ohtanı, E. and Kamenetsky, V. S. (2013): Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali rich melts in the deep mantle. Journal of Petrology, 54 (8): 1555-1583.

Košler, J., Magna, T., Mlčoch, B., Mıxa, P., Nývlt, D. and Holub, F. V. (2009): Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical Geology, 258: 207-218.

Krıstjánsson, L., Gudmudsson M. T., Smellıe, J. L., McIntosh, W. C. and Esser, R. (2005): Palaeomagnetic, 39Ar/40Ar, and stratigraphical correlation of Miocene–Pliocene basalts in the Brandy Bay area, James Ross Island, Antarctica. Antarctic Science, 17 (3): 409-417.

Larter, R. D., Barker, P.F. (1991): Effects of the ridge crest-trench interaction on Antarctic-Phoenix spreading: forces on a young subduction plate. Journal of Geophysical Research, 96: 19 583-19 607.

Lawver, L. A., Keller, R. A., Fısk, M. R. and Strelın, J. (1995): Bransfield Strait, Antarctic Peninsula: active extension behind a dead arc. In: B. Taylor. (ed.): Backarc Basins: Tectonics and Magmatism. Plenum Press, Holland, 315-342.

Le Bas, M.J., Le Maıtre, R.W., Streckeısen, A. and Zanettın, B., (1986): A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27: 445-450.

Le Masurıer, W.E., (2002): Architecture and evolution of hydrovolcanic deltas in Marie Byrd Land, Antartica. In: J.L. Smellie, M.G. Chapman (eds.): Volcano-ice Interaction on Earth and Mars, Geological Society of London Special Publications, London, pp. 115-148.

Lı, H. Y., Xu, Y. G., Ryan, J. G., Huang, X. L., Ren, Z. Y., Guo, H. and Nıng, Z.G. (2016):  Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochimica et Cosmochimica Acta, 178: 1-19.

Mallık, A., Dasgupta, R. (2013): Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth and Planetary Science Letters, 329–330: 97-108.

Marenssı, S. A., Casadío, S. and Santıllana, S. N. (2010): Record of Late Miocene glacial deposits on Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic  Science, 22: 193-198.

Massabıe, A. C., Morellı, J. R. (1977): Buchitas de la isla Vicecomodoro Marambio, Sector Antártico Argentino. Revista de la Asociación Geológica Argentina, 32: 44-51.

Mitchell, N. C., Beier, C., Rosin, P. L., Quartau, R. and Tempera, F. (2008): Lava penetrating water: Submarine lava flows around the coasts of Pico Island, Azores. Geochemistry, Geophysics, Geosystems, 9: 29, http://dx.doi. org/10.1029/2007gc001725.

Mlčoch, B., Nývlt, D. (2013): Vulkanismus a zalednění prostoru ostrova Jamese Rosse. In: P. Prošek (ed.): ANTARKTIDA. Academia Press, pp. 253-264.

Mlčoch, B., Nývlt, D. and Mixa, P. eds. (2018): Geological map of James Ross Island - northern part 1:25,000. Unpublished manuscript, Czech Geological Survey, Praha.

Nelson, P. H. H. (1975): The James Ross Island Volcanic Group of North−East Graham Land. British Antarctic Survey Scientific Report, 54: 62 pp.

Nelson, A.E., Smellıe, J.L., Hambrey, M.J., Williams, M., Vautravers, M., Salzmann, U., Mcarthur, J. M. and Regelous, M. (2009): Neogene glacigenic debris flows on James Ross Is− land, northern Antarctic Peninsula, and their implications for regional climate history. Quaternary Science Reviews, 28: 3138-3160.

Nehyba, S., Nývlt, D. (2014): Deposits of pyroclastic mass flows at Bibby Hill (Pliocene, James Ross Island, Antarctica). Czech Polar Reports, 4: 103-122.

Nehyba, S., Nývlt, D. (2015): “Bottomsets” of the lava−fed delta of James Ross Island Volcanic Group, Ulu Peninsula, James Ross Island, Antarctica. Polish Polar Research, 36: 1-24.

Nývlt, D., Košler, J., Mlčoch, B., Mixa, P., Lisá, L., Bubík, M. and Hendriks, B. W. H. (2011): The Mendel Formation: evidence for Late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 363-384.

Pearce, J. A., Stern, R. J., Blommer, S. H. and Fryer, P. (2005): Geochemical mapping of the Mariana arcbasin system: implication for the nature and distribution of the subduction component. Geochemistry Geophysics Geosystems 6, article no: Q07006, 27 pp., doi: 10.1029/ 2004GC000895.

Pirrie, D., Sykes, M. A. (1987): Regional significance of proglacial delta front reworked tuffs, James Ross Island area. British Antarctic Survey Bulletin, 77: 1-12.

Porebskı, S. J., Gradzinski, R. (1990): Lava−fed Gilbert delta in the Polonez Cove Formation (Lower Oligocene), King George Island, West Antarctica. In: A. Colella, D.B. Prior (eds.): Coarse−Grained Deltas. International Association of Sedimentologists Special Publication, 10: 335-351.

Rex, D. C. (1976): Geochronology in relation to the stratigraphy of the Antarctic Peninsula. British Antarctic Survey Bulletin, 43: 49-58.

Saunders, A. D. (1982): Petrology and geochemistry of alkali basalts from Jason Peninsula, Oscar II Coast, Graham Land. British Antarctic Survey Bulletin, 55: 1-19.

Saunders, A. D., Tarney, J. (1982): Igneous activity in the southern Andes and northern Antarctic Peninsula: a review. Journal of  Geological Society, London, 139: 691-700.

Schiano, P., Clocchiatti, R., Shimizu, N., Weis, D. and Mattielli, N. (1994): Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: implications for metasomatism in the oceanic upper mantle. Earth and Planetary Science Letters, 123: 167-178.

Sigvaldason, G. (1968): Structure and products of subaquatic volcanoes in Iceland. Contributions to Mineralogy and Petrology, 18: 1-16.

Skilling, I. P. (1994): Evolution of an englacial volcano: Brown Bluff Antarctica. Bulletin of Volcanology, 56: 573-591.

Skilling, I. P. (2002): Basaltic pahoehoe lava−fed deltas: large−scale characteristics, clast generation, emplacement processes and environmental discrimination. In: J. L. Smellie, M. G. Chapman (eds.): Volcano−Ice Interaction on Earth and Mars. Geological Society, London Special Publication, 202: 91-113.

Skilling, I. P. (2009): Subglacial to emergent basaltic volcanism at Hlöðufell, south-west Iceland: a history of ice confinement. Journal of Volcanology and Geothermal Research, 185: 276-289.

Smellie, J. L. (1987): Geochemistry and tectonic setting of alkaline volcanic rocks in the Antarctic Peninsula: a review. Journal of Volcanology and Geothermal Research, 32: 269-285.

Smellie, J. L. (1999): Lithostratigraphy of Miocene–Recent, alkaline volcanic fields in the Antarctic Peninsula and eastern Ellsworth Land. Antarctic Science, 11: 362-378.

Smellie, J. L. (2006): The relative importance of supraglacial versus subglacial meltwater escape in baaltic subglacial tuya eruptions: an unresolved conundrum. Earth-Science Reviews, 74: 241-268.

Smellie, J. L., Edwards, B. R. (2016): Glaciovolcanism on Earth and Mars. Products, Processes and Palaeoenvironmental Significance. Cambridge University Press, 490 p.

Smellie, J. L., Skilling, I. P. (1994): Products of subglacial volcanic eruptions under different ice thicknesses: two examples from Antarctica. Sedimentary Geology, 91: 115-129.

Smellie, J. L., Pankhurst, R., Thomson, M. R. A. and Davies, R. E. S. (1984): The geology of the South Shetland Islands: VI. Stratigraphy, geochemistry and evolution (Vol. 87). British Antarctic Survey, 85 pp.

Smellie, J. L., Johnson, J. S. and Nelson A.E. (2013): Geological map of James Ross Island. I. James Ross Island Volcanic Group (1:125 000 Scale). BAS GEOMAP 2 Series, Sheet 5, British Antarctic Survey, Cambridge.

Smellie, J. L., McArthur, J. M., McIntosh, W. C. and Esser R. (2006): Late Neogene interglacial events in the James Ross Island region, Northern Antarctic Peninsula, dated by Ar/Ar and Sr−isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 242: 169-187.

Smellie, J. L., Johnson, J. S., McIntosh, W. C., Esser, R., Gudmundsson, M. T., Hambrey, M. J. and Van Wyk De Vries, B. (2008): Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 260: 122-148.

Stixrude, L., Lithgow-Bertelloni, C. (2012): Geophysics of chemical heterogeneity in the mantle. Annual Review of Earth and Planetary Sciences, 40: 569-595.

Sun, S.-S., Mcdonough, W. F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A. D. Saunders & M. J. Norry (eds.): Magmatism in the Ocean Basins, Geological Society, London, Special Publication no. 42, pp. 313–45.

Sykes, M.A. (1988): New K–Ar age determinations on the James Ross Island Volcanic Group, north-east Graham Land, Antarctica. British Antarctic Survey Bulletin, 80: 51-56.

Tuffen, H., McGarvie, D. W., Gilbert, J. S. and Pinkerton, H. (2002): Physical volcanology of a subglacial-to-emergent rhyolitic tuya at Rauðu-fossafjöll, Torfajökull, Iceland. In: J. L. Smellie, M. G. Chapman (eds.): Volcano-Ice interaction on Earth and Mars. Geological Society, London, Special Publications, 202: 213-236

Umino, S., Nonaka, M. and Kauahikaua, J. (2006): Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Küpaianaha flow of Kilauea volcano at Kaimü Bay, Hawaii. Bulletin of Volcanology, 69: 125-139.

Wood, D. A. (1980): The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province. Earth and Planetary Science Letters, 50: 11-30.

Wilch, T. I., McIntosh, W. C. (2007): Miocene-Pliocene ice-volcano interactions at monogenetic volcanoes near Hobbs Coast, Marie Byrd Land, Antarctica. US Geological Survey, OF-2007-1047 doi:10.3133/of2007-1047.sep074

Yaxley, G., Green, D. (1998): Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen 78: 243-255. 

Notes: