Title: | |
Authors Name: |
Kateřina Snopková, Ivo Sedláček, David Šmajs |
Journal: | Czech Polar Reports |
Issue: | 8 |
Volume: | 2 |
Page Range: | 178-185 |
No. of Pages: | 8 |
Year: | 2018 |
DOI: |
10.5817/CPR2018-2-14 |
Publishers: | muniPress Masaryk University Brno |
ISSN: | 1805-0689 (Print), 1805-0697 (On-line) |
Language: | English |
Subject: | |
Abstract: |
Cold-adapted soil ecosystems represent dynamic communities varying in a structure, microbial abundance and metabolic activity. To antagonize competitors, soil bacteria produce a variety of inhibitory agents. We tested production of antimicrobials in Pseudomonas spp. isolated in James Ross Island, Antarctica, and performed transmission electron microscopic analyses of selected high-molecular-weight bacteriocin particles. The dimensions of R-tailocins produced by Pseudomonas sp. P2422 were 168 ± 2.0 nm (length) and 16 ± 0.8 nm (width) thus representing one of the largest tailocins secreted by Pseudomonas spp. To our knowledge, this is the first evidence of tailocin production by bacteria originated from polar regions.
|
Keywords: |
pyocin, tailocin, phage tail-like particle, antimicrobial agents, James
Ross Island |
References: |
Bakkal, S., Robinson, S. M., Ordonez, C. L., Waltz, D. A. and Riley, M. A. (2010): Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology, 156: 2058-2067. Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubès, R., Postle, K., Riley, M., Slatin, S. and Cavard, D. (2007): Colicin biology. Microbiology and Molecular Biology Reviews, 71: 158-229. Dorosky, R .J., Yu, J. M., Pierson, L. S. and Pierson, E. A. (2017): Pseudomonas chlororaphis produces two distinct R-tailocins that contribute to bacterial competition in biofilms and on roots. Applied and Environmental Microbiology, 83, 15. Dorosky, R. J., Pierson, L. S. and Pierson, E. A. (2018): Pseudomonas chlororaphis produces multiple R-tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities. Applied and Environmental Microbiology (Epub ahead of print). Dyke, J., Berk, R. S. (1974): Growth inhibition and pyocin receptor properties of endotoxin from Pseudomonas aeruginosa. Proceedings of the Society for Experimental Biology and Medicine, 145: 1405-1408. Fernandez, M., Godino, A., Príncipe, A., Morales, G. M. and Fischer, S. (2017): Effect of a Pseudomonas fluorescens tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy. Journal of Biotechnology, 256: 13-20. Fischer, S., Godino, A., Quesada, J. M., Cordero, P., Jofré, E., Mori, G. and Espinosa-Urgel, M. (2012): Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology, 158: 1493-1503. Gebhart, D., Lok, S., Clare, S., Tomas, M., Stares, M., Scholl, D., Donskey, C. J., Lawley, T. D. and Govoni, G. R. (2015): A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio. 6, 2. Ghequire, M.G.K., De Mot, R. (2014): Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiology Reviews, 38: 523-568. Ghequire, M.G.K., De Mot, R. (2015): The tailocin tale: peeling off phage tails. Trends in Microbiology, 23: 587-590. Ghequire, M. G. K., Dillen, Y., Lambrichts, I., Proost, P., Wattiez, R. and De Mot, R. (2015): Different ancestries of R tailocins in rhizospheric Pseudomonas isolates. Genome Biology and Evolution, 7: 2810-2828. Ito, S., Kageyama, M. (1970): Relationship between pyocins and a bacterciophage in Pseudomonas aeruginosa. The Journal of General and Applied Microbiology, 16: 231-240. Kerr, B., Riley, M. A., Feldman, M. W. and Bohannan, B. J. M. (2002): Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 418: 171-174. Mavrodi, D. V., Loper, J. E., Paulsen, I. T. and Thomashow, L. S. (2009): Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiology, 9, 8. Micenková, L., Štaudová, B., Bosák, J., Mikalová, L., Littnerová, S., Vrba, M., Ševčíková, A., Woznicová, V. and Šmajs, D. (2014): Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiology, 14, 109. Michel-Briand, Y., Baysse, C. (2002): The pyocins of Pseudomonas aeruginosa. Biochimie, 84: 499-510. Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M., Kanaya, S., Ohnishi, M., Murata, T., Mori, H. and Hayashi, T. (2000): The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Molecular Microbiology, 38: 213-231. O’Connor, E. M., Shand, R. F. (2002): Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. Journal of Industrial Microbiology and Biotechnology, 28: 23-31. Príncipe, A., Fernandez, M., Torasso, M., Godino, A. and Fischer, S. (2018): Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiological Research, 212–213: 94-102. Riley, M. A., Gordon, D. M. (1999): The ecological role of bacteriocins in bacterial competition. Trends in Microbiology, 7: 129-133. Riley, M. A., Wertz, J. E. (2002): Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie, 84: 357-364. Rybakova, D., Radjainia, M., Turner, A., Sen, A., Mitra, A. K. and Hurst, M. R. H. (2013): Role of antifeeding prophage (Afp) protein Afp16 in terminating the length of the Afp tailocin and stabilizing its sheath. Molecular Microbiology, 89: 702-714. Rybakova, D., Schramm, P., Mitra, A. K. and Hurst, M. R. H. (2015): Afp14 is involved in regulating the length of Anti-feeding prophage (Afp). Molecular Microbiology, 96: 815-826. Sambrook, J., Russell, D.W. [eds] (2001): Molecular Cloning: A Laboratory Manual. vol.1, 3rd ed. Cold Spring Harbor Laboratory Press, New York, United States, 2100 p. Sánchez, L. A., Gómez, F. F. and Delgado, O. D. (2009): Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles, 13: 111-120. Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012): NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9: 671-675. Scholl, D., Cooley, M., Williams, S.R., Gebhart, D., Martin, D., Bates, A. and Mandrell, R. (2009): An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7. Antimicrobial Agents and Chemotherapy, 53: 3074-3080. Smit, J.A., Hugo, N. and de Klerk, H.C. (1969): A receptor for a Proteus vulgaris bacteriocin. The Journal of General Virology, 5: 33-37. Tagg, J. R., Dajani, A. S. and Wannamaker, L. W. (1976): Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 40: 722-756. Terauds, A., Lee, J. R. (2016): Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Diversity and Distributions, 22: 836-840. |
Notes: |