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Abstract
Questions: Are artificial neural networks useful for the auto-
matic assignment of species composition records from vegeta-
tion plots to a priori established classes (vegetation units)? Is
the assignment more accurate (1) if the classes are defined by
numerical classification rather than by expert-based classifi-
cation; (2) if the training data set is selected to include plots
that are richer in diagnostic species of particular classes?
Material: Species composition records (relevés) from 4186
plots of Czech grasslands.
Methods: Plots were classified into 11 phytosociological
alliances (expert classification) and into 11 clusters derived
from numerical cluster analysis. Some plots were used for
training the classifiers, which were the multi-layer perceptrons
(MLP; a type of artificial neural network). Other plots were
used for testing the performance of these classifiers. Plots used
for training were selected (1) randomly; (2) according to
higher representation of diagnostic species of particular classes.
Results: Different MLP classifiers correctly classified 77-83%
of plots to the classes of the expert classification and 70-78% to
the classes of the numerical classification. The better result in
the former case was mainly due to two classes in the expert
classification, which were well recognized by the classifiers and
at the same time contained a large proportion of the plots of the
entire data set. Correct classification of the plots belonging to
these large classes resulted in a good overall performance of the
classifiers. After training with randomly chosen plots, the clas-
sifiers produced better results than after training with plots that
contained more diagnostic species. This indicates that the bi-
ased selection of the training plots disables the classifiers to
recognize the entire variation within the classes and results in
errors when new plots are to be classified.
Conclusions: MLP is suitable for assigning vegetation plots
to already established classes. Unlike some other methods of
supervised classification, it performs well even in communi-
ties that are poor in diagnostic species. However, the method
does not provide clear assignment keys that could be used for
class identification in field surveys. It is therefore more appro-
priate in applications that aim at a reliable class assignment
rather than understanding the assignment rules.

Keywords: Cluster analysis; Grassland; Multi-layer percep-
tron; Phytosociological data; Predictive habitat modelling;
Vegetation survey.

Abbreviations: MLP = Multi-layer perceptron.
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Introduction

Community ecologists and vegetation scientists rou-
tinely use a range of numerical methods for classifying
species-by-sites matrices (e.g. Legendre & Legendre
1998) in order to establish community types. Ejrnæs et
al. (2004) emphasised an important dichotomy between
unsupervised and supervised classifications, which is
commonly applied in studies of vegetation patterns based
on remote sensing (Ripley 1996), but is rarely used in
the context of species-based community classifications.
Unsupervised classifications include both agglomera-
tive methods of cluster analysis and divisive methods
such as TWINSPAN. These methods require a minimum
input from the user and produce classes by searching for
patterns in the analysed data set, without considering
any external information. When classification is repeated
after the addition of new data to the previously classified
data set, serious changes may appear, including shifts in
the cluster membership of the previously classified sites.
This is a disadvantage, because every new classification
exercise produces a new classification system that is
difficult to compare both with the established standards
of existing national or international classifications and
with the results of other classification exercises
(Bruelheide & Chytrý 2000). In addition, unsupervised
classification methods do not include procedures for
new sampling units to be assigned to the previously
established classes.

By contrast, supervised classification methods are
learning an established classification from a training
data set, which contains predictor variables measured
in each sampling unit and a priori class assignments of
the sampling units. In this way a classifier is developed
which can be used to assign new sampling units to
classes. There are several methods suitable for the
supervised classification of community composition
data, e.g. quadratic discriminant analysis (Ejrnæs et al.
2004), multinomial log-linear regression, classifica-
tion trees and artificial neural networks (Ripley 1996).
In this paper, we will focus on the latter.
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Artificial neural networks (Ripley 1996; Lek &
Guégan 1999) are computational modelling tools inspired
by the structure of the human brain. They learn from
experience and recognize complex patterns, predict class
membership or values of different variables. One ad-
vantage of artificial neural networks is their non-para-
metric nature, which makes them appropriate for the
analysis of nearly any kind of data irrespective of their
statistical properties. Artificial neural networks have
frequently been reported as giving a more accurate
prediction than other supervised methods (Cairns 2001;
Liu et al. 2003), but at the expense of the interpretability
of the results. They represent a black-box approach
which hides the underlying prediction process.

Artificial neural networks consist of a number of
units called neurons, which are arranged in layers. The
simplest structure consists of an input layer and an
output layer of neurons, but usually also one or more
hidden layers are placed between the two (Fig. 1). The
neurons are interconnected by coefficients called weights,
which are successively modified when the network is in
operation. After feeding values from the input data set,
each neuron passes its given value to the connections
leading out from it, and on each connection the value is
multiplied by the weight associated with that connec-
tion. Each neuron in the next layer then receives a value
which is the sum of the values produced by the connec-
tions leading to it, performs a simple computation using
a predefined function, and delivers the value to the
neurons in the next layer (Ripley 1996).

Currently the most popular types of artificial neural
networks include the Kohonen network (also called
‘self-organizing feature map’; Kohonen 1982) and the
multi-layer perceptron (MLP; Rumelhart et al. 1986).
The Kohonen network is an unsupervised method which

identifies clusters in data; it can be applied to the analy-
sis of species composition data in a similar way as
cluster analysis or ordination (Chon et al. 1996; Foody
1999a; Brosse et al. 2001; Giraudel & Lek 2001). By
contrast, MLP uses supervised learning and creates a
classifier by fitting output values (responses) to input
data (predictors) in the training data set. Subsequently,
the trained classifier may be used to predict the output
values for new cases that were not contained in the
training data set.

In the context of vegetation classification, MLP has
mainly been used for predictive modelling of the spatial
distribution of vegetation or land-cover classes from
remote sensing data (Paola & Schowengerdt 1995; Foody
1996; Zhang et al. 1997; Cairns 2001). It is rarely
applied to community ecology, where it is potentially
suitable for predictive modelling of e.g. species richness
(Guégan et al. 1998), biomass or productivity (Lae et al.
1999), performance of dominant species (Tan & Smeins
1996) or conservation priority of habitats (Ejrnæs et al.
2002). MLP can be trained to recognize a priori classes
from either environmental variables measured in each
sampling site (Hirlbert & Ostendorf 2001), a combina-
tion of environmental variables and species composi-
tion (Liu et al. 2003; Zhang et al. 2004), or pure species
composition (Ejrnæs et al. 2002).

The objective of this paper is to test the efficiency of
the multi-layer perceptron as a tool for the supervised
classification of species composition data in vegeta-
tion science. We will focus on comparing its perform-
ance when the a priori classification is based either on
expert knowledge or cluster analysis, and when train-
ing is done either with a set of randomly selected
sampling units or with a set of units that are considered
as the best representatives of particular classes.

Fig. 1. Schematic architecture of the MLP network
with one hidden layer, used to predict the assignment of
vegetation plots to one of 11 classes. Input data are
cover values of species; the number of neurons in the
input layer (triangles) is equal or lower than the number
of species in the data set. Output is the plot assignment
to one of 11 classes.
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Material and Methods

Data sets and a priori classifications

The basic data set used for developing MLP classi-
fiers included 4186 plot records of species composi-
tion of semi-natural grasslands from the Czech Repub-
lic, taken from the Czech National Phytosociological
Database (Chytrý & Rafajová 2003). As plots were
irregularly distributed across the national territory, the
selection of the data set was based on a geographically
stratified resampling which deleted some randomly
selected plots in oversampled areas. Plots < 4 m2 and >
100 m2 were excluded. To reduce noise in the data, the
records of cryptogams, juvenile trees and species with
less than five occurrences were deleted. After this
reduction, 598 species were included in the analyses.

Species cover values were transformed to the nine-
degree ordinal scale (van der Maarel 1979).

We used two a priori classifications that were
subsequently used to train and test the MLP classifier.
The first classification (‘expert classification’) was a
traditional phytosociological classification, entirely
based on expert knowledge. We subdivided the data
set of vegetation plots into 11 phytosociological alli-
ances of the standard national vegetation classification
(Moravec et al. 1995), using the alliance assignments
given by the authors of the individual plot records. The
ecologically and floristically closely related alliances
Cnidion and Veronico-Lysimachion, which were repre-
sented by few plots, were merged. The second classifi-
cation (‘numerical classification’) was prepared from
the same data set using cluster analysis in the PC-ORD
4 program (McCune & Mefford 1999), with Euclidean

Table 1. Phytosociological and ecological interpretation of classes in expert and numerical classification, numbers of plots in the
individual classes and subsets, and performances of the best MLP classifiers in each of the two variants of the selection of the training
data set (i.e., either random or by diagnostic species). The best classifiers shown in this table are those marked by * in Table 2.

Expert classification

1 Arrhenatherion – mesic meadows 138 275 825 273 235 85 86 244 220 80 90
2 Polygono-Trisetion – montane mesic meadows 20 40 120 37 23 58 62 42 28 70 67
3 Cynosurion – mesic pastures 25 49 148 53 38 78 72 48 31 63 65
4 Alopecurion – subatlantic lowland wet meadows 45 89 268 84 55 62 65 138 65 73 47
5 Calthion – submontane wet meadows 328 655 1965 670 616 94 92 627 574 88 92
6 Cnidion – subcontinental lowland wet meadows 9 17 52 16 14 82 88 12 11 65 92
7 Molinion – meadows of wet, nutrient poor sites 70 140 420 136 91 65 67 156 95 68 61
8 Nardion – subalpine Nardus grasslands 9 18 54 14 9 50 64 15 11 61 73
9 Violion – submontane Nardus grasslands 36 72 216 67 49 68 73 60 42 58 70
10 Nardo-Juncion – wet Nardus grasslands 8 8 24 10 4 50 40 12 8 100 67
11 Nardo-Agrostion – montane Nardus grasslands 16 31 94 34 23 74 68 40 25 81 63

Total 704 1394 4186 1394 1157 83 83 1394 1110 80 80

Numerical classification

1 Mesic to moderately dry meadows (Arrhenatherion) 104 209 627 191 155 74 81 182 149 71 82
2 Submontane Nardus grasslands (Violion) 90 180 540 206 149 83 72 177 129 72 73
3 Montane heathlands and Nardus grasslands (Nardetalia) 44 87 263 86 74 85 86 86 68 78 79
4 Various types of mesic to wet meadows 84 168 505 158 114 68 72 186 124 74 67
5 Wet meadows on base-poor soils (Calthion) 60 120 360 108 81 68 75 103 79 66 77
6 Intermittently wet meadows on nutrient-poor soils (Molinion) 31 62 186 57 51 82 89 67 52 84 78
7 Various types of wet meadows 113 225 676 246 165 73 67 253 149 66 59
8 Montane meadows (Polygono-Trisetion) 15 29 89 31 27 93 87 31 26 90 84
9 Cirsium rivulare wet meadows (Calthion) 31 63 188 60 53 84 88 58 42 67 72
10 Scirpus sylvaticus wet meadows (Calthion) 52 104 313 117 94 90 80 123 91 88 74
11 Filipendula ulmaria wet meadows (Calthion) 73 147 439 134 121 82 90 128 110 75 86

Total 697 1394 4186 1394 1084 78 78 1394 1019 73 73
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distance and Ward clustering method. We accepted 11
clusters from the resulting dendrogram, in order to use
the same number of classes as in the expert classifica-
tion. Ecological and phytosociological interpretations
of classes of both classifications are presented in Table
1 and details of species composition in Apps. 1 and 2.

From each of these two classified data sets we se-
lected the training data set and the selection data set,
which were further used for the development of the
MLP classifier (see below), and the test data set, which
was used to evaluate model performance. We used two
alternative procedures for dividing plots of the basic
data sets into training, selection and test data sets. The
first procedure was the random selection of plots. In
the second procedure we selected as training data the
most typical plots of particular classes, in order to test
the hypothesis that training with typical plots would
improve the quality of prediction. As a criterion for the
selection of typical plots we took the number of diag-
nostic species of the given class occurring in each plot.
Diagnostic species for each class were determined by
calculating the phi coefficient of association (Chytrý et
al. 2002) between each species and each class. This
coefficient ranges from –1 to +1, higher values meaning
that the species is more associated with the given class
and can therefore be considered as a diagnostic species
of the class. To avoid the dependence of the phi coeffi-
cient on the relative size of the classes within the data
set, we re-calculated this coefficient for the case of
equal size of all classes, which was set to 10% of the
entire data set size. This procedure enabled direct com-
parisons of the phi coefficients between the classes that
contained unequal numbers of plots. The phi coeffi-
cients were calculated using the JUICE 6.3 program
(Tichý 2002). We assigned diagnostic status to those
species that exceeded the subjectively selected value of
Φ = 0.25. For each class, we first randomly selected 1/3
of its plots and assigned them to the test data set. Then
we ranked the remaining plots within each class by
decreasing number of diagnostic species, and excluded
half of these plots, the one which was poorer in diagnos-
tic species. The other half was further randomly divided
into two halves, and one of them was used for the
training data set and the other for the selection data set.
Thus, the division of plots within each class followed
the ratio 1 : 1 : 2 : 2 in turn for the training, selection and
test data sets and excluded plots. For the sake of compa-
rability, the same division ratio was used for the analy-
ses based on the random selection. In one small class of
the expert classification, where the training data set
would contain only four plots after this division, we
moved another four plots of this class from the selection
data set to the training data set.

MLP classifiers for supervised classification

Supervised classification was performed with the
multi-layer perceptron (MLP; Rumelhart et al. 1986) in
the STATISTICA 7.0 program (www.statsoft.com). This
artificial neural network comprises one input layer of
neurons, at least one hidden layer and one output layer
(Fig. 1). The maximum number of neurons it contains is
determined by the number of input variables; in our case,
the input layer could contain up to 598 neurons, each
corresponding to one species in the data set. Each vector
of input values contained species cover values in a par-
ticular plot. The hidden layers encode and organize the
information received from the input layer and deliver it to
the output layer. The output layer contains as many
neurons as there are classes in the a priori classification
(11 in our case). During the training process, data vectors
(plots) with a known class membership are submitted to
the network and the output values are compared with the
correct class membership. Errors identified in these com-
parisons are used for iterative adjustment of the weights
on each connection of the network until the pre-defined
error-function value decreases below a certain threshold.

One major problem of artificial neural networks is
the risk of over-learning (over-fitting), especially in
larger networks with more complex underlying func-
tions. Over-learning occurs when the network is trained
to minimize the error on the training data set, but at the
same time looses its ability to generalize and recognize
newly encountered cases. We prevented over-learning
by using an independent data set, called selection data
set, in the process of network training. The network was
trained on the training data set and the error on this data
set naturally dropped as the training process proceeded.
At the same time, the error was measured on the selec-
tion data set. Over-learning was indicated by ceasing of
dropping or, indeed, by rising of the error on the selec-
tion data set, with simultaneously continued dropping of
the error on the training data set. If this situation oc-
curred, the training process was stopped.

Another problem of artificial neural networks is the
possible convergence of underlying functions to local
minima. To avoid this problem, we used a two-phase
training, with initial application of the back-propagation
algorithm, which is less prone to stick in local minima,
followed by the conjugate gradient descent algorithm.
We also tested, for each model,  five MLP networks
with different architectures, including those with one or
two hidden layers, with different number of input vari-
ables (some species with lower capacity to discriminate
classes were excluded) and with different number of
training epochs. Selection of the network architectures
was made using the Intelligent Problem Solver module
in the STATISTICA program.
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Evaluation of the classifiers

The MLP classifications of the test data sets were
compared with the a priori classifications of the same
data sets using the concepts of sensitivity and positive
predictive power (Fielding & Bell 1997). Sensitivity is
the probability of correct classification, i.e. the propor-
tion of sampling units that belong to a particular class
and have been correctly assigned to this class by the
classifier. Positive predictive power is the probability
that a sampling unit belongs to a particular class if the
classifier assigns it to this class. Let us use the following
contingency table to compare the numbers of sampling
units that are correctly and incorrectly classified with
respect to class i, where i is 1, 2, …, n, and n is the
number of classes in the given classification:

No. of sampling units ... actually belonging actually not
 to class i  belonging to class i

classified to class i ai bi
not classified to class i ci di

Using this notation we calculated the sensitivity of
the classifier for each class i as Si = ai / (ai + ci), the
positive predictive power for each class i as PPPi = ai /
(ai+ bi) and the overall sensitivity for the whole classifi-
cation as S  =  Σ ai / N, where N is the total number of
plots. The values of these variables are given in percent-
ages throughout this paper.

 Results

The MLP classifiers for the expert classification
correctly classified 81-83% plots of the test data set
when trained with randomly selected plots and 77-80%
plots when trained with plots containing a high propor-
tion of diagnostic species of particular classes (Table 2).
These values were significantly different from each
other and significantly higher than the values for the
classifier for numerical classification (ANOVA, P <
0.05). Plot assignments to the classes of the a priori
classification and the MLP assignments by the best
classifier (i.e. that with the highest sensitivity on the test
data set) within each classification type and training
data set variant are compared in Table 1 and, in more
detail, in Apps. 3 and 4. In the best classifier for expert
classification, based on the random selection of the test
data set, sensitivity for individual classes ranged be-
tween 50-94%. Poorest sensitivity and positive predic-
tive power occurred in those classes that were repre-
sented by few plots in the training data set, while the
highest values of both of these measures were reached in
the large class 5 which contained almost half of the plots
of the entire data set. When the classifier was trained
with plots rich in diagnostic species, sensitivity for
individual classes was between 58-100%, however, the
overall sensitivity was lower than after training with the
randomly selected plots due to a lower sensitivity of the

Table 2.  Basic details of architecture and performance of the MLP classifiers tested. More details on the classifiers with the highest
sensitivity on the test data set within each variant (i.e. 5, 10, 12 and 19, marked with asterisks) are reported in Table 1.

Classifier No. of neurons Sensitivity

Input layer Hidden layer 1 Hidden layer 2 Training data set Selection data set Test data set

Expert classification, random selection of the training data set
1 311 73 67 99.6 80.7 81.2
2 378 87 73 100.0 79.7 81.2
3 385 98 0 98.7 81.8 80.9
4 215 85 0 97.6 81.6 82.1
5 * 419 97 0 100.0 82.6 83.0

Expert classification, selection of the training data set by diagnostic species
6 260 98 0 100.0 90.8 79.6
7 313 92 85 100.0 91.4 78.3
8 314 75 68 100.0 92.2 77.0
9 84 55 0 99.6 92.5 78.4

10 * 421 94 0 100.0 93.5 79.6
Numerical classification, random selection of the training data set

11 450 100 0 100.0 79.2 76.7
12 * 425 96 0 100.0 77.0 77.8
13 312 70 64 96.1 75.0 73.6
14 388 88 82 99.7 75.6 76.1
15 251 78 0 100.0 76.0 74.1

Numerical classification, selection of the training data set by diagnostic species
16 203 72 68 99.3 91.0 70.3
17 391 97 0 100.0 91.5 72.5
18 372 77 75 100.0 89.8 71.8
19 * 135 72 0 99.6 90.2 73.1
20 392 89 0 100.0 91.0 71.9
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classifier for the large class 5 in this case.
The MLP classifiers for the numerical classification

correctly classified 74-78% of plots of the test data set
when trained with randomly selected plots and 70-73%
of plots when trained with the plots that were rich in
diagnostic species (Table 2). These values were signifi-
cantly different from each other and lower than those for
the expert classification (ANOVA, P < 0.05). Sensitiv-
ity for individual classes ranged between 68-93% after
training with the randomly selected plots and between
66-90% after training with plots rich in diagnostic species
(Table 1). The differences in both sensitivity and the
positive predictive power among the classes were lower
for the numerical classification than for the expert clas-
sification.

In both expert and numerical classification, selec-
tion of the training data set based on the higher represen-
tation of diagnostic species resulted in a higher sensitiv-
ity on the training and selection data sets, but the crucial
parameter for the evaluation of the classifier perform-
ance, i.e. sensitivity on the test data set, was lower than
in the case of random selection of the training data set
(Table 2).

Discussion

The MLP classifiers were able to classify correctly
77-83% of plots to the classes of the expert classifica-
tion and 70-78% to the classes of numerical classifica-
tion (Table 1). The better results in the case of the
expert classification may be surprising, considering
that the classification was made subjectively by differ-
ent researchers with differing opinions and experiences.
Not all classes of the expert classification were equally
well defined either. For example, the numerical classifi-
cation indicated a low degree of differentiation of Nardus
grasslands by including them all in two classes (2 and
3), while the expert classification divided them into
four classes (8-11). Inconsistencies inherent to the ex-
pert classification resulted in the greater variation in
sensitivity of the classifiers among classes, which ranged
between 50-100% for expert classifications and 66-93%
for numerical classifications. However, the higher over-
all sensitivity of the classifiers for expert classification
does not mean that numerical classification is inherently
worse or more difficult to reproduce with the MLP
classifier. Both this study and our previous pilot studies
indicate that in the classified data sets in which one class
contains a high proportion of the plots of the entire data
set, the overall sensitivity mainly depends on the classi-
fier’s ability to recognize successfully this particular
class. In our case, there were two large classes in the
expert classification (1 and 5), which together included

68% of the plots in the entire data set. These classes
corresponded to the alliances Arrhenatherion and
Calthion, respectively, which are generally accepted as
being well-defined alliances of the traditional phytoso-
ciological classification of Central European grasslands
(Ellenberg 1996; Havlová et al. 2004; Botta-Dukát et
al. 2005). The classifiers for expert classification were
able to recognize these large classes successfully, both
in terms of sensitivity and positive predictive power,
and this resulted in higher overall values of these
measures for the expert classification. On the other
hand, there was a rather heterogeneous but large class 7
in the numerical classification, which was poorly recog-
nized by the classifiers. Therefore the overall sensitivity
and positive predictive power of the numerical classifi-
cation were decreased. We presume that without the
effects of these large classes, the overall performance of
the classifiers would not considerably differ between
expert and numerical classification. From this point of
view, there seems to be no fundamental difference in the
ability of the MLP classifier to reproduce the presumably
less consistent expert classification and the more consist-
ent numerical classification.

In our study, we only considered the unequivocal
assignment of each plot to a single class by the classi-
fier. However, neural networks can produce a fuzzy
assignment, giving the probabilities of class member-
ship for each plot. Instead of assigning each plot to the
most probable class, as we did, it would also be possible
to evaluate the classifier’s performance by taking mem-
bership probabilities for more than one class for each
plot. In that case, the sensitivity of the classifiers would
most probably be higher than our conservative estimate
of 70-83%, because in the cases of misclassification, the
membership probabilities for the correct class were
usually the second highest. Given this fact and consider-
ing that many misclassifications might have resulted
from inconsistencies in the a priori classifications, we
conclude that MLP may be a successful technique for
the supervised classification of species-by-sites matri-
ces.

In both cases, expert and numerical classification,
worse results were achieved when the classifiers were
trained with plots ‘typical’ of the particular classes (con-
taining several diagnostic species) rather than with ran-
domly selected plots (Table 1), especially with the classi-
fiers for expert classification where this difference was
significant. Although the sensitivity on training- and se-
lection data sets was slightly higher with the use of plots
rich in diagnostic species, indicating that classes within
this subset of plots were easier to discriminate, it was
lower on the test data set, which contained plots both poor
and rich in diagnostic species. Thus, our original hypoth-
esis that training with typical plots would result in a
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higher proportion of correct assignments was not sup-
ported. Due to removal of the less typical plots from the
training data set the classifier did not learn to recognize
such plots and tended to misclassify them in the test data
set. A similar result was presented by Foody (1999b) in
the context of the remote sensing data classification. In
that case, the neural network trained with a set of border
patterns performed better than one trained with a set of
patterns drawn from the cores of the classes.

This result points to the ability of the MLP classifier
of recognizing class membership also for plots that are
poor in diagnostic species. This is an advantage against
the expert classification of traditional phytosociology,
which is predominantly based on diagnostic species,
and also against the formalized supervised methods
derived from similar principles. Such methods include,
for example: (1) the indicator ordination option in
TWINSPAN, which provides indicator species and
thresholds for plot assignment to the classes (Hill 1979);
(2) calculations of similarity coefficients between the
species composition of individual plots and species
frequencies within classes of a priori classifications
(Hill 1989; Kočí et al. 2003); (3) the COCKTAIL method,
which assigns plots to classes on the basis of the occur-
rence of species from pre-defined sociological species
groups (Bruelheide 2000; Bruelheide & Chytrý 2000;
Kočí et al. 2003). However, the black-box approach of
the MLP classifiers does not provide sufficient informa-
tion on the underlying assignment process, which could
be used for developing simple keys for the identification
of vegetation types in field mapping.

In our application of MLP we directly used the
species-by-sites matrix as input data. Ejrnæs et al. (2002)
applied an artificial neural network in a similar context
(predicting the degree of habitat naturalness from species
composition) but used a different, two-step approach.
First they subjected the species-by-sites matrix to ordi-
nation and then used site scores on the first two or three
ordination axes as input data for the neural network.
With this approach, supervised classification can be
done through the passive ordination of new sites and
their subsequent assignment to the appropriate class by
the neural network. Our approach is more straightfor-
ward, using a single step, but with large data sets it can
be computationally more demanding. Future studies
should compare both approaches, especially with re-
spect to the possible effect of noise contained in the
species-by-sites matrices on the one hand and the poten-
tial loss of information due to using only the higher
ordination axes on the other hand. The latter issue can
possibly have negative influence on the classifier’s per-
formance especially when it is assumed to recognize
higher numbers of classes.
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