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Abstract: The classification methodology based on morphometric data and supervised artificial neural networks (ANN)
was tested on five fly species of the parasitoid genera Tachina and Ectophasia (Diptera, Tachinidae). Objects were initially
photographed, then digitalized; consequently the picture was scaled and measured by means of an image analyser. The 16
variables used for classification included length of different wing veins or their parts and width of antennal segments. The
sex was found to have some influence on the data and was included in the study as another input variable. Better and
reliable classification was obtained when data from both the right and left wings were entered, the data from one wing
were however found to be sufficient. The prediction success (correct identification of unknown test samples) varied from 88
to 100% throughout the study depending especially on the number of specimens in the training set. Classification of the
studied Diptera species using ANN is possible assuming a sufficiently high number (tens) of specimens of each species is
available for the ANN training. The methodology proposed is quite general and can be applied for all biological objects
where it is possible to define adequate diagnostic characters and create the appropriate database.

Key words: artificial neural networks; species identification; Diptera; Tachinidae; Tachina; Ectophasia; parasitoids

Introduction

In the last century, artificial neural network (ANN)
computation was developed having been inspired by
neurobiology and the way the human brain works.
Nowadays, numerous and wide applications are found
in all branches of science. There are extensive appli-
cations of ANN in chemistry, biochemistry as well as
in biology. ANN is used, e.g., in microbiology, ecology,
hydrobiology, entomology, and even in forensic investi-
gations.
The use of ANN in taxonomy is rather rare, even

though in this discipline they clearly provide a powerful
pattern recognition and data analysis tool as pointed
out already by Weeks & Gaston (1997). Their ability to
learn patterns in multivariate data makes them ideally
suited to identification problems.
Identification of species has always been an object

of general interest and often an important task in sys-
tematic biological disciplines, such as botany, zoology,
as well as entomology. Up to now, the traditional meth-
ods for the identification of species are mostly based
on great encyclopaedic knowledge, memory, and many
long-years experience of an expert in the field. ANN,
however, have a great potential to partly automate

the identification process, especially if coupled with im-
age analysis (Weeks & Gaston 1997; Gaston & O’Neill
2004). This was also documented in the case study by
Do et al. (1999) who successfully applied ANN to iden-
tify six spider species from the family Lycosidae us-
ing transformed digital images of female genitalia. The
ANN have also performed the treatment of bioacoustic
data, e.g., Chesmore (2004) used them for automated
identification of four species of British Orthoptera from
sound recordings. Hernández-Borges et al. (2004) iden-
tified three species of limpets (Mollusca, Patellogas-
tropoda, Patella) in the coastal areas of the Canary
Islands using ANN and chemotaxonomic data (the con-
tent of different aliphatic hydrocarbons).
Quite often, in some taxonomic groups the charac-

ters used for the discrimination of species are not un-
ambiguously distinct. They may overlap, be variable
or even missing and the species might then be diffi-
cult to separate. Studying the flowering plant genus
Lithops (Aizoaceae), Clark (2003) suggested that, in
such cases, ANN can be used as advisory tools for tax-
onomists. This is particularly useful since experts in dif-
ferent groups often work alone and an unbiased second
opinion on the identification of a “difficult” specimen
is valuable. Frequently, the difficulties in the identifi-
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cation pertain to some developmental stage or sex. For
example, the Neotropical Phlebotomine sand fly species
of the Lutzomyia intermedia (Lutz & Neiva, 1912) com-
plex (Diptera, Psychodidae) can be easily distinguished
by females but their males are very similar. Marcondes
& Borges (2000) succeeded in reliably distinguishing
the males using ANN and a set of morphometric char-
acters and thus brought the first application of ANN in
Diptera.
One of the most taxonomically problematic fam-

ilies of Diptera are the Tachinidae (McAlpine 1989),
also being one of the largest fly families, with about
8,200 species worldwide. Among the species 1,550 oc-
cur in the Palaearctic Region and nearly 880 in Europe
(Tschorsnig & Richter 1998; Tschorsnig et al. 2005). Ta-
chinids are parasitoids of insects and some other arthro-
pods, and may be regarded as economically beneficial
as they also prey on many agricultural and forest pests.
The Central European fauna was treated in the mono-
graph by Tschorsnig & Herting (1994). Some persistent
doubts and taxonomic problems concern, e.g., the gen-
era Tachina and Ectophasia, due to a great morpholog-
ical variability of individual species in Central Europe
(Vaňhara et al. 2004). Often, this causes an uncertain
and ambiguous identification of some specimens, which
can be otherwise solved out only by much experience
and a good reference collection.
The aim of our study is to select an alternative

set of diagnostic characters and evaluate the possibility
of supervised ANN to identify individual specimens in
these two model genera of Tachinidae.

Theory of ANN

ANN represent sophisticated computational modelling
tools which can be used to solve a wide variety of
complex problems. The attractiveness of ANN in biol-
ogy comes from their capability to learn and/or model
very complex systems which allows for the possibility
of them being used as a tool for classification. There-
fore, their actual potential in this branch of science is
high. A big contrast between conventional computer
programs and ANN is reflected in the fact that the for-
mer can only accomplish those tasks for which they
were specifically designed, while ANN is a kind of gen-
eralised learning machine which can, in principle, learn
almost anything. ANN’s theory has been widely dis-
cussed in previous literature. Good overview of ANN
principles can be found in the monographs by Car-
ling (1992), Fausett (1994), Bishop (1995), Patterson
(1996); the theory of different networks has been re-
viewed by Zupan & Gasteiger (1991). Here we will only
briefly describe the basic idea of this methodology.
ANN is a computational model formed from a cer-

tain number of single units, artificial neurones or nodes,
connected with coefficients (weights), wij, which con-
stitute the neural structure. Many different neural net-
work architectures can be used. One of the most com-
mon is the feed forward supervised neural network of
multi-layer perceptrons (MLP). The MLP is conven-
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Fig. 1. Construction of ANN from four layers, i.e., input, output
and two hidden layers.

tionally constructed with three or more layers, i.e., in-
put, output and hidden layers (Fig. 1).
Each layer has a different number of nodes. The

input layer receives the information about the system
(the nodes of this layer are simple distributive nodes
which do not alter the input value at all). The hidden
layer processes the information initiated at the input,
while the output layer is the observable response or be-
haviour. The inputs, inputi, multiplied by connection
weights wij, are first summed and then passed through
a transfer function to produce the output, outi. The de-
termination of the appropriate number of hidden layers
and number of hidden nodes in each layer is one of the
most critical tasks in ANN design. Unlike the input and
output layers, one starts with no prior knowledge of the
number and size of hidden layers.
The use of ANN consists of two steps: “Training”

and “Prediction”. The “Training” consists first of defin-
ing input and output data to the network. It is usually
necessary to scale the data or normalize it to the net-
works paradigm. This data is referred to as the training
set. In this training phase, where actual data must be
used, the optimum structure, weight coefficients and bi-
ases of the network are searched for. The training is con-
sidered complete when the neural networks achieved the
desired statistical accuracy as it produces the required
outputs for a given sequence of inputs. A good criterion
to find the correct network structure and therefore to
stop the learning process is to minimize the root mean
square error (RMS)

RMS =

√∑N
i=1

∑M
j=1(yij − outij)2

N × M

where yij is the element of the matrix (N ×M) for the
training set or test set, and outij is the element of the
output matrix (N ×M) of the neural network, where N
is the number of variables in the matrix and M is the
number of samples. RMS gives a single number which
summarizes the overall error.
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Fig. 2. Measured wing (A 1–14) and antennal (B 15–16) characters in Tachinidae.
1(cs1 part) – part of costal section cs1; 2(cs2) – length of costal section cs2; 3(cs3) – costal section cs3; 4(cs4) – cs4; 5(cs5) – cs5; 6(R1)
– length of R1; 7(R2+3) – length of R2+3; 8(R4+5) – R4+5; 9(M part1) – medial vein M between bm-cu and its bend; 10(M part2) –
length of post angular vein (the rest of M); 11(CuA1 part) – CuA1 between bm-cu and dm-cu; 12(dm-cu) – length of dm-cu; 13(r-m)
– length of r-m; 14(bm-cu) – length of bm-cu. 15(2nd) – width of antennal segment 2; 16(3rd) – width of antennal segment 3.

After a supervised network performs well on train-
ing data, it is important to check what it can do with
the data it has not seen before. This is called verifi-
cation. This testing is critical to insure that the net-
work has not simply memorized the training set but
has learned the general patterns involved within an ap-
plication. At this stage other input data are submitted
to the network in order to evaluate if it can predict the
outputs. In this case the outputs are already known,
but they are not shown to the network. The predicted
value is compared to the experimental one to see how
well the network is performing. If the system does not
give reasonable outputs for this test set, the training
period is not over or the network is able to model the
data but cannot predict them. When the verification of
the known data is passed well, in the final stage, un-
known data is evaluated and the outputs are predicted
(classification of unknown data is done).

Material and methods

A group of several model species selected from the para-
sitoid family Tachinidae (Diptera) was used for ANN stud-
ies, namely three species of the genus Tachina Meigen, 1803:
T. fera (L., 1761), T. magnicornis (Zetterstedt, 1844), T.
nupta (Rondani, 1859), and two species of the genus Ec-
tophasia Townsend, 1912: E. crassipennis (F., 1794) and E.
oblonga (Robineau-Desvoidy, 1830). The material included
altogether 113 specimens (58 males and 55 females) which
were a priori identified or revised by J. Vaňhara using the
key of Tschorsnig & Herting (1994).

Dry-mounted (pinned) adults were initially photogra-
phed (stereomicroscope Olympus SZX 12 with attached Ca-
media C-5050 digital camera), consequently the digitalized
picture was scaled (in µm) by means of an image analyser
using software M.I.S QuickPhoto Micro Olympus (Japan).

The wing shape and vein pattern is at once quite con-
servative within different insect groups and almost all taxa
are diagnosably different from one another. This seems to

be true for insects in general (Kukalová-Peck 1991) and
Diptera in particular (e.g., Hennig 1954; Houle et al. 2003).
Moreover, the transparent, two-dimensional structure and
obvious venation make insect wings ideal subject for image
analysis in taxonomy (Weeks & Gaston 1997; Weeks et al.
1997). We preferentially selected 14 morphometric charac-
ters on wings, which included length of different wing veins
or their parts (Fig. 2A). In Tachina only one wing was mea-
sured, in Ectophasia both the right and left wing data were
recorded, if possible, for each specimen. Furthermore (in
Tachina only), we measured the width of antennal segments
2 and 3 (Fig. 2B). All these linear distances were measured
by manually pointing landmarks with a mouse on computer
screen in the QuickPhoto program which then automatically
provided the value of the measurement. Sex of the studied
specimen was recorded as another variable. Thus, there were
altogether 17 variables in Tachina (14 for one of the wings,
two for antenna, and one for sex) and 29 variables (14 for
left, 14 for right wing, and one for sex) in Ectophasia.
Character abbreviations used:
RW, LW – right and left wings
1-(cs1 part) – length of the part of section cs1 of costa C;
2-(cs2) – length of costal section cs2;
3-(cs3) – length of costal section cs3;
4-(cs4) – length of costal section cs4;
5-(cs5) – length of costal section cs5;
6-(R1) – length of radius R1;
7-(R2+3) – length of radius R2+3;
8-(R4+5) – length of radius R4+5;
9-(M part1) – length of the basal part of medial vein, i.e.
between cross-vein bm-cu and bend of M;
10-(M part2) – length of post angular vein, i.e. medial vein
M from its bend to the end;
11-(CuA1 part) – length of anterior branch CuA1 of cubital
vein, its part between bm-cu and dm-cu;
12-(dm-cu) – length of discal medial-cubital cross-vein dm-
cu;
13-(r-m) – length of radial-medial cross-vein r-m;
14-(bm-cu) – length of basal medial-cubital cross-vein bm-
cu;
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15-(2nd) – the width of antennal segment 2 in its widest
part, in Tachina only;
16-(3rd) – the width of antennal segment 3 in its widest part,
in Tachina only;
17-(sex M, F) – male, female.

ANN computation and program
ANN computation was performed using TRAJAN Neural
Network Simulator, Release 3.0 D. (TRAJAN Software Ltd
1996–1998, UK). Some calculations (summary statistics, t-
test for dependent samples, cluster analysis) were also done
using STATISTICA V.7 (StatSoft, Inc., USA). All compu-
tation was performed on a standard PC computer with op-
erating system Microsoft Windows Professional XP.

Remark about the computational strategy and ANN proce-
dures
Data for ANN computing were randomly divided into: 1.
Learning set; 2. Verification set; and 3. Test set.

The learning set consists of a number of samples (spec-
imens of flies a priori identified to species) characterized by
variables (characters) obtained by image analysis. This set
is used to search for the suitable architecture of ANN by
which the classification is made possible. The process which
is based on searching for corresponding weights wij in order
to minimize the RMS value is called learning or training.
The correctness of the model obtained using the most suit-
able data set, architecture and training procedure is then
verified on another independent set of samples called the
verification set. Finally, the obtained ANN model can be
used to classify principally unknown specimens (Test set).

Each set represents a matrix with the number of
columns corresponding to the number of variables. The
variables, in the input and/or output, can have numerical
values, but also nominal (categorial, e.g., male/female, the
name of the species).

Missing values
It can happen that the matrix cannot be completed because
some values of variables within data sets are not known or
cannot be obtained (damage in one of the wings, etc.). Al-
though such cases that contain missing data are problem-
atic, they can still be used in data analysis. There are var-
ious methods to manage with missing data (e.g., by mean
substitution, various types of interpolations and extrapola-
tions).

Results and discussion

Case (1): Identification of the model species of
the genus Tachina
In this Case (1) in order to examine the possibilities of
ANN for the classification of 75 fly samples, a total of
17 characters were used for the species T. fera (49), T.
magnicornis (20) and T. nupta (6).
Because the number of specimens for T. nupta was

limited, we first examined the possibility of only clas-
sifying the first two rich species, i.e., T. fera and T.
magnicornis, where we had a higher number of speci-
mens.
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Fig. 3. Search of the optimal architecture for the classification of
two species, i.e., Tachina fera and T. magnicornis.

Classification of T. fera and T. magnicornis
There were 49 specimens of T. fera and 20 of T. mag-
nicornis available. In the first stage the optimal archi-
tecture (17, n, 2) for the modelling was investigated.
The number of inputs (17) is the number of nodes in
the input layer, n the number of nodes in the hidden
layer, and 2 the number of nodes in the output layer
(the name of the species). Plotting the RMS value as
a function of the number of nodes in the hidden layer,
as shown in Fig. 3, the optimal number of nodes in the
hidden layer, n, was equal to 3. Thus the modelling with
ANN was done using the ANN architecture (17, 3, 2)
and it was found that all the samples from the training
set were correctly classified in the learning process.
In order to prove the classification and prediction

power of ANN, some of the samples were arbitrarily ex-
cluded from the training set (the leave-one-out method-
ology) and then used as the verification samples. For
just one verified specimen 100% correct classification
was always reached; for up to 5 specimens excluded
from the training set, the verification (prediction) was
from 98.6 to 100%, and for 10 samples 94.2–100%. The
decrease in the correctness of prediction is understand-
able as the number of specimens used in the learning set
was also decreasing. Anyway, it can be concluded that
the variables selected in the case under study are repre-
sentative and contain sufficient resolving power for cor-
rect ANN classification and prediction. Also the number
of samples in the training set was sufficient. Generally,
the greater the number of specimens, the better the
prediction that can be expected.

The role of the sex variable in input data
The information on specimen’s sex was also given as a
variable in the input layer. However, the problem was
if the sex would be considered so important as to be
included in the analysis. When the variable sex was
eliminated from the learning set, the classification of T.
fera and T. magnicornis hardly changed. However, the
information on sex remains implicitly in the data (as
specimens of different sex were mixed together). When
the classification (name) of the specimen was used as
a variable in the input layer and the sex as an output
variable, almost all the samples were correctly classified
to the assigned sex in the training process.
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Fig. 4. Search of the optimal architecture (A) and an example
of the optimal Artificial Neural Networks architecture (B) for
classification of 3 spp., i.e., Tachina fera, T. magnicornis and T.
nupta.

It is therefore evident that the variable, sex, has
some value. Therefore, in the next step, only data cor-

responding to specimens with sex = males (M) was used
in the training set (and at the same time the variable
sex was NOT given in the input). Using such input data
in the learning set the classification of females (F, out-
put variable) was done using the same neural architec-
ture as before. Complete 100% prediction was obtained
only for T. fera, while most of T. magnicornis were ei-
ther classified wrongly or classified as unknown.
In conclusion, there is almost no difference between

male and female specimens for T. fera, but some sexual
difference is observed between specimens of T. magni-
cornis. Therefore, in the next study the variable sex
was kept in the input data and used as one of the input
variables.

Classification of T. fera (49), T. magnicornis (20), and
T. nupta (6), i.e., 75 specimens
Even if the number of samples for one of the species was
quite low (6 samples), it was examined to see whether
T. nupta can be classified and/or distinguished from T.
fera and T. magnicornis at all. Following the same pro-
cedure as in the cases described above, the result of the
search of optimal architecture is shown in Fig. 4A. Ev-
idently, a more complex architecture is needed, where
the number of nodes in the hidden layers is equal to 4.
The corresponding architecture (17, 4, 3) is present in
Fig. 4B.
A traditional cluster analysis, cf. Fig. 5 demon-

strated that, in this case, the classification is very diffi-
cult and complicated. Using ANN for direct clustering
(classification) is however more straightforward.
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Fig. 5. Classification of three species of Tachina using cluster analysis (Ward’s method, Euclidean distance metric).
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Application of the whole data for the species classifica-
tion
The complete data of all samples including all species,
i.e., T. fera (49), T. magnicornis (20), and T. nupta
(6) and the architecture (17, 4, 3) were examined with
respect to the prediction of unknown samples. All sam-
ples from T. fera and T. magnicornis were classified
correctly. In the rare T. nupta, single specimens were
either wrongly classified or classified as unknown. Sum-
marizing, 95–100% prediction was reached. It is sug-
gested that better and more reliable prediction could
be reached by increasing the number of samples in the
learning set for T. nupta.

Conclusions from Case 1
We have found that the optimal ANN architecture is
a three-layer ANN with the number of nodes in the
hidden layer equal to a max. of four. This eliminated
“over-training” and thus ensured reliable prediction.
Classification of T. fera, T. magnicornis, and T.

nupta by ANN is possible. In order to reach a high de-
gree of certainty and reliability of the prediction, the
number of specimens of T. nupta should be enlarged to
be comparable with the first two species. In the biomet-
ric database the sex should be given as one of the input
characters as well.

Case (2): Recognition of Ectophasia crassipen-
nis and E. oblonga
E. crassipennis and E. oblonga data from the LEFT (14
morphometric characters) and RIGHT (also 14) wings
were collected from 25 specimens of E. crassipennis and
13 specimens of E. oblonga.
In the first stage all data (including left and right

wings all together) was used to search for the ANN ar-
chitecture and training, in spite of the fact that some
of the data was missing (12 % of entries pertaining to
damaged specimens). The standard procedure to re-
place missing data as offered in the Trajan program
was applied.
The optimal architecture of ANN for training was

found to be (38, 4, 2) and, using it, the training was
successful. All samples were correctly classified. Verifi-
cation of the model was done by selecting arbitrarily
by a Monte Carlo method from 1 up to 5 specimens
and the prediction was always correct. Even when 10
specimens were excluded from the training set (mov-
ing them to the Verification set), only 1–2 specimens
were not correctly classified or they were considered as
unknowns. It can be concluded that the variables are
adequately selected and enable correct classification as
well as excellent prediction.

Examination of the sex variable
When the sex variable was removed from the input
there was no apparent effect. All the samples were again
classified correctly. In spite of this, the significance of
this variable was studied further.
Because the number of samples was rather low,

an attempt was made to predict the sex variable from
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Fig. 6. Success of the prediction concerning classification of Ec-
tophasia crassipennis and E. oblonga (input data from the Right
wing only were used, all data from the Left wing were eliminated).

all the input data, including species classification, in
the learning set. It was found that all samples were
correctly classified according to sex. Even testing the
prediction of sex for the 1–3 samples excluded from the
process of training was successful (from 95 to 100%). It
seems therefore that sex has some effect on the other
input parameters and so whenever possible this variable
should be given as an input.

The effect of the right or left wing variables
The important question is whether the data from the
left wing is the same as from the right one and also if
the data from the left and right wings is interchange-
able. In order to find the influence of the left/right on
the classification process, the data from the right wing
was used solely in the training phase and it was demon-
strated that just data from the right wing only can
be used for the classification because all of the spec-
imens were classified correctly in the learning phase.
Then, the verification was examined. The data in the
training set was systematically reduced and more and
more samples were excluded from the Training set by
a Monte Carlo method and given to the Verification
set.
Fig. 6 shows how the success of the prediction de-

pends on the number of samples. It follows from this
figure that for a low number of samples in the verifica-
tion set (i.e., no. of samples in the training set was not
too diminished); the prediction ability does not change
much. Keeping the number of samples to at least 30
or more, the success of prediction is higher than 98%
(calculated with respect to the total no. of samples).
Similar results were obtained for the ANN classi-

fication from the left wing measurements (results not
given here).

Classification separating the data for the right and left
wings
We have also examined the use of ANN when data from
the right and left wings were analyzed separately. Each
specimen of Ectophasia was now entered twice in the
data set, once with the right wing values only and once
with the left wing data. Data evaluation gave the fol-
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Table 1. Comparison of right and left wing data in Ectophasia.

Right wing Left wing t-test for dependent samples
Character
no. mean S.D. mean S.D. n t P

1 1833.06 391.71 1877.34 388.62 28 −3.04 0.01
2 959.29 207.13 990.22 211.27 30 −2.90 0.01
3 1894.08 330.09 1900.78 336.53 30 −0.45 0.65
4 701.23 116.77 690.37 120.37 30 1.46 0.16
5 126.24 30.94 124.28 31.87 29 0.58 0.57
6 2936.27 602.28 3029.63 582.08 30 −1.91 0.07
7 4179.47 759.06 4194.68 729.98 30 −0.38 0.70
8 4742.33 809.34 4698.63 790.36 30 1.35 0.19
9 3668.37 639.15 3668.37 628.62 30 0.00 1.00
10 1517.96 270.07 1442.35 215.79 26 3.67 0.001
11 2498.66 520.46 2390.89 467.40 30 2.60 0.01
12 1118.01 257.07 1181.83 257.64 27 −3.27 0.003
13 277.30 81.44 282.94 86.19 28 −0.92 0.36
14 228.04 59.05 219.51 45.47 29 1.39 0.18

Explanations: Mean and standard deviation are given in µm. Boldface values are significant at P < 0.05.

lowing results: 43 out of 50 wings of E. crassipennis
and 24 out of 26 of E. oblonga were correctly classified.
A single wing of E. crassipennis was classified wrongly,
six wings of E. crassipennis and 2 of E. oblonga were
classified as unknown (unclassified). These results are
slightly worse than when each specimen was character-
ized by data from both the right and left wings.

Conclusion of Case 2
Because the whole collection of the samples (38 in to-
tal) is rather small, it is difficult to decide if there are
statistical differences between the Right and Left wings.
Using the t-test for dependent samples, differences sig-
nificant at P < 0.05 between the right and left wings
were found in five out of the 14 characters (Tab. 1).
The use of both the right and left wing data for each
specimen probably brings some dispersion which might
reflect the real variation in fly morphology and the in-
crease of the number of data in input improves the pre-
diction. However, a more decisive answer can always be
obtained by increasing the number of samples.

Conclusions and perspectives
The use of Artificial Neural Networks for species iden-
tification of Diptera was tested on model species from
the family Tachinidae (3 spp. of Tachina, 2 spp. of Ec-
tophasia) which are difficult to identify by conventional
taxonomic procedures. Biometric input data measured
both in males and females took in 16 characters of one
wing and antenna (Tachina), 14 characters of both the
right and left wings (Ectophasia), and the sex of the
studied specimen. It was found that the variables se-
lected in this study are representative and contain suf-
ficient resolving power for correct ANN classification
and prediction, assuming the number of samples in the
training set is sufficiently high. Generally, the higher
the number of specimens, the better the prediction ob-
served. Data in all cases studied was not only success-
fully modelled by ANN but also it was found possible
to predict and identify the new unknown samples with
excellent success.

Generally, the methodology based on ANN can be
applied for any other biological objects where it is pos-
sible to define adequate diagnostic characters.
In conclusion, with a sufficiently extensive and reli-

able database, the Artificial Neural Networks represent
a new powerful tool for the fast and objective identifi-
cation of flies even in taxonomically difficult groups and
open new possibilities for taxonomy. In some cases, they
could offer an alternative to molecular diagnostic meth-
ods which are becoming widely used in current entomol-
ogy (e.g., Tóthová et al. 2006). Comparing to those,
ANN coupled with image analysis is a relatively cheap
and non-destructive analytic method which can thus be
used also, e.g., for studying type material or collection
material permanently mounted on slides. Moreover, the
identification process can be considerably speeded up
with automating the image analysis system (Houle et
al. 2003; Tofilski 2004).
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