Patterns of vegetation diversity in deep river valleys of the Bohemian Massif

David Zelený supervisor: Milan Chytrý guarantee: Karel Prach Faculty of Sciences University of South Bohemia

Patterns of vegetation diversity in deep river valleys of the Bohemian Massif

- Zelený D. & Chytrý M.: Pattern of species richness in the topographically complex landscape of deep river valleys in the Bohemian Massif **manuscript.**
- Zelený D., Li C.-F. & Chytrý M.: Pattern of plant species richness along the gradient of landscape topographical heterogeneity: result of spatial mass effect or environmental shift? **submitted manuscript.**
- Zelený D. (2008): Co-occurrence-based assessment of species habitat specialization is affected by the size of species pool: reply to Fridley *et al.* (2007). **Journal of Ecology**, *in press.*

Environmental control of the vegetation pattern in deep river valleys of the Bohemian Massif.

Preslia 79: 205-222

Question: What is the relationship between species composition of vegetation and the main ecological gradients in deep river valleys?

Study area: Vltava valley (DZ) and Dyje valley (MCh)

Data: vegetation plots sampled along transects down the slope of the valley

Analyses: NMDS, CCA, moving window CCA

キノヨウ

Collecting field data:

where: steep valley slopes with natural and seminatural vegetation;

how: plots 10x15 m in even distances along the transect downslope;

what was collected: data about vegetation (relevé) and environmental factors (topographical and soil);

how many: 94 plots (Vltava, collected by DZ) and 82 plots (Dyje, collected by MCh).

Vltava valley, close to Rohan, summer 2008 (photo by Ching Feng Li)

Distribution of vegetation types – iris diagrams

Distribution of vegetation types – iris diagrams

NMDS ordination diagrams

Variation in species composition explained by topographical and soil explanatory variables (CCA)

Is aspect as an environmental variable more important at the valley bottom, upper valley edge or in the middle?

plots sorted along relative elevation

piete cented diving relative elevation

Zelený D. & Chytrý M. (2007): Environmental control of the vegetation pattern in deep river valleys of the Bohemian Massif. – Preslia 79: 205-222.

Zelený D. & Chytrý M. (2007): Environmental control of the vegetation pattern in deep river valleys of the Bohemian Massif. – Preslia 79: 205-222.

Zelený D. & Chytrý M. (2007): Environmental control of the vegetation pattern in deep river valleys of the Bohemian Massif. – Preslia 79: 205-222.

Paper 1: Conclusions

- vegetation in deep river valleys is structured along two main complex ecological gradients: the moisture-nutrients-soil pH and the light-temperature-continentality gradient; the first one is related to the elevation above valley bottom, the second one to aspect;
- 2. the effect of aspect is mostly pronounced in the middle parts of the valley slopes, while being lowest at the shaded valley bottoms;
- 3. soil variables are slightly better predictors of vegetation composition than topographical variables;
- 4. the results of all analyses are similar in both valleys and probably may be generalized also into other deep river valleys of mid-altitudes of the Bohemian Massif.

Zelený D. & Chytrý M.:

Pattern of species richness in the topographically complex landscape of deep river valleys in the Bohemian Massif

manuscript

Question: Which environmental factors are the best predictors of the local species richness in deep river valleys and how can be diversity-environment relationship influenced by differences in regional species pool?

Study area: Vltava valley (DZ) and Dyje valley (MCh).

Data: the same as in previous study.

Analyses: Generalized linear models

Poster presentation

16th Workshop of European Vegetation Survey

Rome, spring 2007

European Vegetation Survey, 16th Workshop, Rome (Italy), March 22-26, 2007

Pattern of α- and β-diversity of vegetation in deep river valleys of the Bohemian Massif

David Zelený 1.2 & Milan Chytrý 1

 Department of Botany and Zoology, Masaryk University, Kotläitskä 2, CZ-611-37 Bmo, Czech Republic 2) Department of Botany, Biological Faculty, University of South Bohemia, Na Zlaté stoce 1, CZ-370 05, Czech Republic E-mait zeleny@scimunic.z, chytyt@scimunic.z

Introduction

In the gently undulating landscape of the Bohemian Massif, which occupies a large part of the Czech Republic and adjacent areas of Germany and Austria, deep river valleys represent a distinct geomorphologic feature. Compared to other valley types, these are narrow, discondituleys with steep slopes, large mandres, and a narrow, discondituously diveloped floodplain. They are sharply incised into the flat or hilly landscapes, predominantly formed of acid bedrocks, especially granite and gnecies. Deep river valleys are considered to be "diversity hotspots" in landscape which is otherwise heavily affected by human activities. Fine scale spatial pattern and environmental control of plant diversity is the main aim of this study.

Fig. 2 – Set of 'donal platf' aflweing spaklad dehihullern of o – and Palvensell yn di Blenherg indicater valaus in an disekterel mostel of deep mervervlæy. Suffare in modeled utning CM and dreem in kreansel hat at clent gried – high valaes, white – low valaus). V = Vitana valley, D = Dyja valley

Table 1 - Explanatory variables used in the study

Topographic variables (quantitative and categorical data)	
BLEVATION	relative elevation above the valley bottom (0 for the valley bottom, 1 for the upper edge)
SLOPE	alope inclination ("); observed range: Vitava 0-88", Dyje 5-77".
SSW	aspect related to SSW, deviation of plot aspect from 22.5"; variable reaches the highest value for the supposedly warmast SSW aspect.
SOUTH	aspect related to SOUTH; deviation of plot aspect from 0*.
HEAT INDEX	heat index = cos (aspect - 202.5") × tg SLOPE
SURFACE SL	landform shape in the downslope direction (-1 concave, Offal, 1 convex)
SURFACE ISO	landform shape along an isohypse (-1 concave, 0 flat, 1 convex)
Soil variables and soil types (quantitative and presence-absence data)	
pH .	active and ph5 measured in weller polytion
SOL DEPTH	stol depth, expressed as log [soil depth (cm)]
FLUNISOL	Fluverols (water-influenced soils in floodplaire)
SKELETIC	skeletic and hyperskeletic Leplosols (soils on scree accumulations)
CAMBISOL	Cambinols (well-developed zonal sols)
LITHIC	littic Lepissols (shallow sols near rick outcraps)

Results

1) Both valleys share similar spatial pattern of α- and β-diversity:

- a-diversity (Fig. 2, eyes) is concentrated at the valley bottom and decreases in upslope direction. It is higher on south-facing slopes than on north-facing slopes. Additionally to this, in the Dyje valley the upper edges of south-facing slopes are richer in species.
 - β-diversity (Fig. 2, nose) is highest on the valley bottom and decreases
- upslope; lowest β -diversity is in the middle of the north-facing slopes.

2) Generalized linear models (Table 2) revealed that:

 - in both valleys, a-diversity has a quadratic relationship with elevation above the valley bottom (peaking on the valley bottom and upper slopes) and is positively correlated with the presence of Cambisol and Fluxisol. Furthermore, in the VItava valley a-diversity is positively correlated with pH, while in the Dyje valley it has quadratic response to heat index and positive linear response to landform shape in downslope direction.

 - β-diversity is best explained by elevation (quadratic response in the Vltava valley and linear response in the Dyje valley), and by measure of southerness (Vltava) or heat index (Dyje).

 Spatial patterns of ecological characteristics expressed through Ellenberg indicator values are presented in Fig. 2 (mouth).

Conclusions

Two local hotspots of vegetation diversity can be recognized, one at the valley bottom (alluvial forest) and the other on the south-facing upper edges of the valley slopes (thermophilus oak forest). Southfacing slopes are generally more species-rich than the north-facing slopes, however, quadratic relationship between species richness and heat index indicates unimodal response with low richness in extremely dry and warm habitats.

Spatial pattern of β -diversity shows interesting similarities to spatial pattern of α -diversity, β -diversity is concentrated in areas of high habitat heterogeneity, i.e. the valley bottom and the upper edges of (south-facing) slopes. These are also habitats supporting higher alpha diversity. The question is whether these similarities are only a result of co-occurrence or of more general processes of interaction between α - and β -diversity.

reter can be found on: http://aci.imuni.czboitanydoeleny/boater-EVS-07.pdf. Thia abudy was supported by the long-term research plan MSM0021622416 and its results are part of PhD study of D.Z. The name 'donul plot' was invented by Ching Freng Li (Woody)

Spatial distribution of alpha diversity (herb layer species only) in deep river valley – donut plot

Zelený D. & Chytrý M. (manuscript): Pattern of species richness in the topographically complex landscape of deep river valleys in the Bohemian Massif

Variance in species richness explained by spatial and ecological variables

Heat load

ecological: pH (²) + Fluvisol + Heat load + Cambisol + Lithic

Zelený D. & Chytrý M. (manuscript): Pattern of species richness in the topographically complex landscape of deep river valleys in the Bohemian Massif

Relationship between species richness (herb layer species) and measured soil pH

Numbers refer to classification of plots into habitat types, following Sádlo et al. (2007):

1 – acidophilous beech forests, 2 – boreo-continental pine forests, 3 – herb-rich beech forests, 4 – acidophilous oak forests, 5 – ravine forests, 6 – thermophilous oak forests, 7 – alluvial forests and 8 – oak-hornbeam forests.

Relationship between species richness (herb layer species) and estimated habitat species pools (Sádlo et al. 2008)

Paper 2: Conclusions

- the highest local species richness within the valley is located at the valley bottom and at the south and west facing upper edges of the valley slopes;
- soil pH is a strong predictor of species richness, but only in case of Vltava river valley with predominating acid soils with values of pH < 4.5;
- 3. in case of Dyje valley, important factor related to high local species richness is continentality, resulting probably from the higher proportion of continental species in regional species pool of Dyje valley;
- 4. local species richness is positively correlated with the size of regional species pool estimated for particular habitat types; this indicates that estimates of species pool size itself may be a good predictor of real local species richness.

David Zelený, Ching-Feng Li & Milan Chytrý

Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

submitted manuscript

Main question: How is the species richness of microsite correlated with the heterogeneity of surrounding landscape?

Study area: Czech Republic, 250-480 m a.s.l.

Data: Forest vegetation, phytosociological relevés from the Czech National Vegetation Database, 250-480 m a.s.l.

Analyses: 'repeated-correlation analysis', NMDS, GIS

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

increasing topographic heterogeneity of landscape

increasing habitat diversity and increasing fragmentation

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Species richness vs. heterogeneity

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Species richness vs. heterogeneity

Species richness vs. heterogeneity

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Species habitat specialization based on the species niche width along environmental gradient

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Steiner & Köhler (2003): Effects of landscape patterns on species richness – a modelling apporach. – *Agriculture, Ecosystems and Environment*, 98: 353-361.

Species habitat specialization based on the compositional differences among occupied habitats

specialist – occurs in **similar** habitats with **similar** species composition

generalist – occurs in various habitats with diverse species composition

Fridley et al. (2007): Co-occurrence based assessment of habitat generalists and specialists: a new approach for the measurement of niche width. *Journal of Ecology*, **95**, 707-722.

Species richness vs. heterogeneity

Species richness vs. heterogeneity

Ratio of generalists per vegetation type

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Empirical models of species richness along gradients of soil reaction and nutrients

Zelený D., Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Paper 3: Conclusions

- Generally, nutrient-poor vegetation types are more species rich in topographically heterogeneous landscape, while the opposite is true for nutrient-rich vegetation types;
- 2. nutrient-poor vegetation types (e.g. oak forests) have high proportion of habitat generalists, indicating that their higher species richness in heterogeneous landscape may be result of pronounced spatial mass effect;
- 3. the pattern of local species richness along the gradient of landscape topographical heterogeneity may be also explained by the shifts in stand ecological conditions: at heterogeneous landscape, the stands have higher soil reaction (valid for almost all vegetation types), and also higher productivity (valid only for nutrient-rich vegetation types).

David Zelený

Co-occurrence-based assessment of species habitat specialization is affected by the size of species pool: reply to Fridley *et al.* (2007).

Journal of Ecology, in press

Main aim: methodological paper, which points up the problem of the method for estimation of species habitat specialization, as originally published by Fridley et al. (2007); corrected version is proposed.

Thank you for your attention!

