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1 Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2,
611 37 Brno, Czech Republic

2 Department of Biology, Institute of Biosciences, Center of Study of Social Insects (CEIS),
Sao Paulo State University—UNESP, Avenida 24A, 1515 Bela Vista, Rio Claro 13506-900, Brazil

3 Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Slechtitelu 27,
783 71 Olomouc, Czech Republic

4 Department of Food Quality and Safety, Faculty of Agrobiology, Food and Natural Resources,
Czech University of Life Sciences, Kamycka 129, 252 63 Prague, Czech Republic

5 Bee Research Institute, Libcice nad Vltavou 252 66, Czech Republic
* Correspondence: hyrsl@sci.muni.cz; Tel.: +420-549-494-510

Received: 27 June 2019; Accepted: 2 August 2019; Published: 7 August 2019
����������
�������

Abstract: It has been known for many years that in temperate climates the European honey bee,
Apis mellifera, exists in the form of two distinct populations within the year, short-living summer bees
and long-living winter bees. However, there is only limited knowledge about the basic biochemical
markers of winter and summer populations as yet. Nevertheless, the distinction between these two
kinds of bees is becoming increasingly important as it can help beekeepers to estimate proportion of
long-living bees in hives and therefore in part predict success of overwintering. To identify markers
of winter generations, we employed the continuous long-term monitoring of a single honey bee
colony for almost two years, which included measurements of physiological and immunological
parameters. The results showed that the total concentration of proteins, the level of vitellogenin,
and the antibacterial activity of haemolymph are the best three of all followed parameters that are
related to honey bee longevity and can therefore be used as its markers.
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1. Introduction

Honey bees (Apis mellifera L.) are fundamental for agriculture, playing a crucial role in the plant
life cycle as one of the most important pollinators. More than 75% of the 115 leading crop species
worldwide are dependent on or at least benefit from animal pollination [1,2]. Bees (Apoidea) are
responsible for the pollination of approximately 70% of all crop species worldwide [3]. Mainly for this
reason, there are serious economic implications when honey bees struggle with pathogens (Paenibacillus
larvae, Ascosphaera apis, viruses, etc.), parasites and pests (Varroa destructor, Nosema sp., Aethina tumida,
etc.), and other factors affecting the survival of the colony [4].

There are also still unexplained cases of colony collapse disorder (CCD) [5,6]. Honey bee
colony losses are considered to be a multifactorial problem, combining the influence of biotic and
abiotic stressors, e.g., nutrition [7], pesticides [8], and climate change [9]. Therefore, knowledge of
the physiological and immunological status of honey bee colonies is pivotal in helping beekeepers
counteract potential problems and protect honey bees.
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The majority of CCD occur during winter, which is the most risky period for honey bee
colonies [10,11]. Therefore, it is of the utmost importance to study changes in the honey bee organism
during the winter period. Two characteristic populations of honey bees emerge during the year in
temperate climates. Whereas the so-called summer generation is short-living with a lifespan of between
15 and 48 days, the winter generation can survive up to 8 months [12]. Short-living honey bees must
collect sufficient amounts of nectar, honeydew, and pollen during the summer to have enough supplies
to survive unfavourable times when a crop is not available, i.e., winter. Long-living honey bees regulate
colony temperature during the winter season and are predestined to initiate brood rearing at its end,
when this generation is replaced by a new summer generation [13,14]. The winter population is also
exposed to higher ecological pressure of pests and diseases [15–18].

There are not only behavioural [19] differences between these two honey bee populations but
also physiological ones. For example, the titre of juvenile hormone (JH) is elevated [20,21], and the
hypopharyngeal glands are hypertrophied in summer bees [22,23]. In contrast, the amount of storage
and the antioxidant protein vitellogenin (Vg) is increased in the long-living generation [20,24,25].
Fat body, which is used as a store of nutrients and a source of energy, is also enlarged in winter
bees [26]. Moreover, the immune response of honey bees varies over the year as it relies on different
mechanisms. Short-living generations combine humoral and cellular immune reactions, whereas
long-living populations depend mostly on humoral immunity because the functions of haemocytes
during the winter season are limited [27–30]. Last but not least, honey bees are social insects; a social
immunity [31–33] and social caste [34] play an important role in colony defence as well.

The successful over-wintering of honey bee colonies depends on the size and quality of the
winter bee generation [23,35]. Good beekeeping practice, which is focused mainly on Integrated Pest
Management with a special focus on mites [36], can help to protect long-living honey bees. However,
the complete biochemical characterisation of winter and summer generations is so far missing. Here,
we present the comprehensive results of basic biochemical analyses which could help beekeepers to
evaluate the physiological status of their colonies within the whole year and thus help to evaluate the
presence of long-living bees in colony. In this study, we followed the selected honey bee colony over a
period of approximately two years and monitored changes in the physiology and immunity of honey
bees in the hive. We have identified several physiological and immune parameters which significantly
differ between summer and winter honey bee populations and we propose these parameters as markers
of longevity.

2. Materials and Methods

2.1. Experimental Bees

Honey bees, Apis mellifera L., used in the experiment were obtained from a colony kept in Kývalka
apiary near Brno, Czech Republic (GPS location: 49.1886747N, 16.4513211E). The hive chosen for
experiments was selected by a professional apiarist with more than 30 years of experience in beekeeping.
The experimental colony was selected based on its health and development conditions. The colony was
nosema disease and varroasis negative without any clinical symptoms of other diseases. The queen
was introduced to the colony in 2015 and remained the same during the whole experiment (March
2017–September 2018), until the queen’s supersedure in October 2018. The colony performed stable
brood rearing during years 2015 and 2016. The experimental colony received standard care during
the whole experiment. It was treated against varroasis by flumethrin and fed by approximately
15 kg of sucrose solution (3:2 sucrose/water) every autumn; no other supplements were added to the
hive. All samples for analysis were collected from the experimental colony to observe the long-term
developmental characteristics of the hive and to minimize genetic variance. At the beginning of each
month, approximately 150 bees were collected randomly from the colony. Specifically, the bees were
shaken off the comb on plastic plate from which they were swept to plastic vials covered by perforated
caps to enable ventilation. To avoid the sampling of newly hatched adults, honey bees were collected
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from the comb which was not part of the brood chamber but was located right next to it. The data
gathered from the experimental colony (colony 1) were one-time compared in June 2018 to other two
selected colonies (colony 2 and 3) located in the same apiary. All colonies received the same treatment,
developed independently, and were led by unrelated queens. Temperature and humidity at the apiary
were recorded continuously during the experiment. The average values from 3 days prior collection
are plotted in results.

2.2. Haemolymph Collection

Bees were quickly transported to the laboratory in plastic vials with perforated cap to enable air
flow, and haemolymph samples were collected immediately after arrival by cutting off the abdomen
and gently pressing the thorax. The haemolymph samples were always taken within two hours after
collecting the bees to plastic vials. Two microliters of haemolymph were bled out from each individual
honey bee, and if not stated otherwise, the haemolymph from ten bees was pooled to prepare a mixed
sample. Fresh haemolymph samples were used to determinate the concentration of haemocytes,
the total protein concentration, and phenoloxidase activity. Haemolymph samples used to determinate
the other physiological and immunological parameters were diluted with phenylthiourea solution to
prevent melanisation and coagulation. Specifically, 20 µL of collected haemolymph was mixed with
5 µL of phenylthiourea (PTU, 1 mg/mL) in phosphate buffer (PBS, pH 7.0) and stored at −80 ◦C for
further use.

2.3. Physiological Parameters

The total protein concentration in haemolymph was measured. Five bees were bled out per
sample without the use of PTU solution and five samples were prepared each month of the experiment.
The samples were collected on ice to prevent melanisation. The total protein concentration was
measured according to the Bradford method using a commercial kit (Bio-Rad, Hercules, CA, USA).
The optical density was measured using a Multiscan GO spectrophotometer (Thermofisher Scientific,
Waltham, MA, USA) at 700 nm. The exact amount of total protein was calculated from a standard
calibration curve prepared from bovine serum albumin (Sigma-Aldrich, St. Louis, MO, USA).

The total concentration of lipids was determined by the sulpho-phosho-vanillin method according
to Zollner et al. [37] with modifications by Kodrík et al. [38]. One microliter of 1.25× diluted
haemolymph sample was mixed with 200 µL of sulphuric acid (Penta, Prague, Czech Republic) and
incubated at 100 ◦C for 10 min. After quick cooling in a water bath, 2 mL of 13 mM vanillin (Carl Roth
Gmbh & Co. KG, Karlsruhe, Germany) in 66.8% phosphoric acid (Penta, Prague, Czech Republic) was
added and the resulting solution incubated for 30 min at room temperature. The optical density of
samples was measured using a Sunrise spectrophotometer (Tecan, Männedorf, Switzerland) at 546 nm.
The concentration of total lipid was calculated from a standard calibration curve prepared from the
serial dilution of oleic acid (Penta, Prague, Czech Republic).

The total concentration of carbohydrates was measured using the anthrone method [39]. 50 µL of
diluted sample was mixed with 150 µL of 10.3 mM anthrone (Sigma-Aldrich, St. Louis, MO, USA) in
98% sulphuric acid (Penta, Prague, Czech Republic), after which the solution was gently mixed and
incubated at 4 ◦C for 10 min. Then, the mixture was incubated at 100 ◦C for 20 min and then again at room
temperature for 20 min. The optical density was measured using a Sense spectrophotometer (Hidex,
Turku, Finland) at 620 nm with agitation prior to reading. The total concentration of carbohydrates was
calculated according to a calibration curve prepared from differentially diluted glucose (Sigma-Aldrich,
St. Louis, MO, USA).

Levels of vitellogenin (~180 kDa) were determined by sodium dodecyl sulphate (SDS)
electrophoresis according to Gätschenberger et al. [40] with modifications using a Miniprotein II
apparatus (Bio-Rad, Hercules, CA, USA). Five microliters of frozen haemolymph samples were diluted
50× in 0.125 M Tris buffer pH 6.8, and 10 µL of diluted sample were mixed with 10 µL of sample
buffer, 7 µL of mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA), and 73 µL of 0.125 M Tris
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buffer pH 6.8, incubated for five minutes at 90 ◦C, and loaded onto 7.5% acrylamide separation
gel. After separation by SDS electrophoresis, the gels were transferred to 1.2 mM Coomassie blue
(R250, Bio-Rad, Hercules, CA, USA) staining solution; 4:5:1 water/methanol/acetic acid (Penta, Prague,
Czech Republic). Subsequently, gels were destained in a solution of 2 mM acetic acid in 33.3% methanol
until the protein bands were clearly visible. Gels were scanned, and the densities of vitellogenin
bands were measured in ImageJ v.1.52a (National Institutes of Health, Bethesda, MD, USA). The total
vitellogenin concentration was calculated according to a calibration curve prepared from the serial
dilution of bovine serum albumin (66.5 kDa, Sigma-Aldrich, St. Louis, MO, USA) that was present on
each acrylamide gel.

2.4. Cellular Immunity

To determine the concentration of circulating haemocytes, 10 µL of haemolymph from five bees
were mixed with 2.5µL of PTU in PBS (1 mg/mL). The haemocytes were counted using a haemocytometer
under a CX 31 light microscope (Olympus, Tokyo, Japan) with phase contrast. Four samples were
prepared each month of the experiment. The number of haemocytes was expressed as the count of
haemocytes per microliter of haemolymph and evaluated within the experiment.

2.5. Humoral Immunity

The antibacterial activity of honey bee haemolymph was determined by radial diffusion assay
on agar plates inoculated with Micrococcus luteus (CCM 169). Bacteria were cultured overnight in
liquid LB medium (MOBIO, Carslbad, CA, USA) on a rotary shaker (100 RPM, room temperature).
After cultivation, the suspension was diluted to OD600 1.5, mixed with melted LB agar (4% agar in LB,
MOBIO, Carlsbad, CA, USA) in the ratio 1:500 (v/v) at a temperature below 50 ◦C and then poured
on Petri dishes. The agar plates supplemented with M. luteus were left to solidify before wells of
diameter 2 mm were punctured. The honey bee haemolymph and a serial dilution of pure lysozyme
(EC 3.2.1.17; Sigma-Alrich, St. Louis, MO, USA) were loaded into the wells to a volume of 5 µL.
After incubation at 30 ◦C for 24 h, the inhibition zones around wells were scored and the antibacterial
activity of haemolymph was expressed as the equivalent of lysozyme standard.

The activity of phenoloxidase (PO) was measured in freshly collected haemolymph without
phenylthiourea treatment, as published before [41,42]. Haemolymph from five honey bees per sample
(total volume 10 µL) was collected in ice-cold PBS (190 µL; pH 7.0) and gently mixed by pipetting.
Forty microliters of diluted haemolymph were transferred to a microplate well and incubated for
5 min at room temperature. After incubation, 160 µL of PO substrate 3,4-dihydroxy-DL-phenylalanine
(3 mg/mL in PBS; Sigma-Aldrich, St. Louis, MO, USA) was added to start the reaction. The increase in
absorbance at 492 nm was measured every two minutes for 30 min using a Sunrise plate reader (Tecan,
Männedorf, Switzerland). PO activity was determined as the melanisation rate after 30 min of reaction
and expressed as the integral of the reaction curve.

2.6. Data Presentation and Statistical Analysis

The results were plotted using Prism software (GraphPad Software, version 7.0, San Diego, CA,
USA). Statistical differences were evaluated by one-way ANOVA with post hoc Dunn’s test comparing
two short-living populations, May 2017–August 2017, i.e., summer 2017, and May 2018–August 2018,
i.e., summer 2018, and one long-living generation, October 2017–March 2018, i.e., winter 2017/2018.
To compare differences only between summer and winter generations, transient months (March, April,
September), when a mixture of honey bees were present in hives, were omitted from the analysis.
Compilation of statistical data and p-values of Dunn’s test calculated by GraphPad are provided in
supplementary material (Tables S1 and S2). The multivariate Spearman correlations test was performed
to test relationships between the measured variables (physiological and immunological parameters).
The Spearman correlation coefficient r varies from −1 to +1. An r value close to −1 indicates a negative
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correlation, while an r value close to +1 indicates a positive correlation. As the correlation coefficient
value goes towards 0, the relationship between the two variables is considered weaker.

Principal component analysis (PCA) was performed to assess correlations between the
physiological parameters (total protein, lipid, carbohydrate and vitellogenin concentrations,
antibacterial activity, phenoloxidase activity, and haemocyte concentration) and the seasons when the
workers were collected (summer 2017, winter 2017/2018, and summer 2018). A statistical test was
performed on data using the free PAST 3.05 software (University of Oslo, Oslo, Norway). Since the
variables are in different units of measurements, we used a correlation matrix to standardize each
of the variables and to perform PCA. In the graph, summer 2017 is represented by full black dots,
winter 2017/2018 by blue squares, and summer 2018 by red crosses.

3. Results

3.1. Physiological Parameters

The concentration of total proteins in haemolymph varied around 30 mg/mL during both tested
summer periods, and we did not observe any differences between the two corresponding short-living
honey bee populations investigated in the experiment (Figure 1a). However, the protein level increased
significantly during the winter period and remained at over 50 mg/mL from October to March.
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Figure 1. Seasonal development of total protein (a), lipid (b), and carbohydrate (c) concentration and
level of vitellogenin (d) in honey bee haemolymph. Red striped areas indicate summer generations of
honey bees (May–August), and blue area indicates winter generations (October–March). Dots represent
mean ± SD, n = 3–5. Dotted line represents annual average (October 2017–September 2018). Asterisk
indicates significant difference ** p < 0.01, *** p < 0.001, ns = not significant.

During both tested summer periods, the concentration of total lipid oscillated around the annual
average, with a peak of 4.4 ± 0.5 mg/mL in July 2017 (Figure 1b) and a minimum of 1.3 ± 0.1 mg/mL
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in June 2018. The short-living honey bees did not differ from each other, but honey bees collected in
summer 2018 differed significantly from individuals collected in winter 2017/2018. The level of lipids
in winter was over 4 mg/mL.

The total carbohydrate concentration was very stable during all studied seasons (Figure 1c),
and measured values oscillated around the annual average (73.8 mg/mL) with the exception of the
value measured in September 2018. There were no significant differences among all tested seasons.

The concentration of vitellogenin was higher in winter 2017/2018 in comparison with both summer
periods (Figure 1d). In the long-living population, the level of vitellogenin was around 20 mg/mL.
In both summer seasons, values remained below the annual average of 10.2 mg/mL with the exception
of the value 14.2 ± 1.9 mg/mL measured in July 2017. Short-living generations did not differ among
themselves. The vitellogenin level in drones was below the limit of detection for particular method
(Figure S1). The result was confirmed by western blot analysis (Figure S2).

3.2. Immunological Parameters

Antibacterial activity (Figure 2a) varied around 4 mg/mL in the winter season, with a peak of
4.7 ± 2.7 mg/mL in December 2017. In both tested short-living generations, the level of antibacterial
activity was lower than the annual average. Values in summer 2018 reached around 2 mg/mL and
were significantly higher than values in summer 2017, which reached 0.5 mg/mL. Both short-living
generations showed significantly lower antibacterial activity than the winter population.

Insects 2019, 10, x FOR PEER REVIEW 6 of 16 

 

  
(c) (d) 

Figure 1. Seasonal development of total protein (a), lipid (b), and carbohydrate (c) concentration and 
level of vitellogenin (d) in honey bee haemolymph. Red striped areas indicate summer generations of 
honey bees (May–August), and blue area indicates winter generations (October–March). Dots 
represent mean ± SD, n = 3–5. Dotted line represents annual average (October 2017–September 2018). 
Asterisk indicates significant difference ** p < 0.01, *** p < 0.001, ns = not significant. 

3.2. Immunological Parameters 

Antibacterial activity (Figure 2a) varied around 4 mg/mL in the winter season, with a peak of 4.7 
± 2.7 mg/mL in December 2017. In both tested short-living generations, the level of antibacterial 
activity was lower than the annual average. Values in summer 2018 reached around 2 mg/mL and 
were significantly higher than values in summer 2017, which reached 0.5 mg/mL. Both short-living 
generations showed significantly lower antibacterial activity than the winter population. 

Phenoloxidase activity increased slightly but not significantly in the winter period (Figure 2b). 
This measured parameter showed a high degree of variability and no statistically significant 
differences were detected among the monitored seasons. 

In contrast with PO activity, the concentration of haemocytes was very stable during the 
monitored period (Figure 2c). Haemocyte counts oscillated around 500 cells/µL, which was very close 
to the annual average (429 cells/µL). There were noticeable increases in summer 2017 and winter 
2017/2018, with values around 600 cells/µL, while the summer 2018 value was around the annual 
average. Statistical analysis did not reveal any differences in haemocyte concentration dependent on 
the season. 

  
(a) (b) 

ns
ns

ns ***
ns

**

Ma
r

Ap
r

Ma
y

Ju
n Ju
l

Au
g

Se
p

Oc
t

No
v

De
c

Ja
n

Fe
b

Ma
r

Ap
r

Ma
y

Ju
n Ju
l

Au
g

Se
p

0

2

4

6

8 **
***

2017 2018

**

0

2

4

6

8

10

ns
ns

ns

2017 2018

Insects 2019, 10, x FOR PEER REVIEW 7 of 16 

 

 
(c) 

Figure 2. Seasonal development of antibacterial activity (a), the activity of phenoloxidase (b) and 
haemocytes counts (c) in honey bee haemolymph. Red striped areas indicate summer generations of 
honey bees (May–August), and blue area indicates winter generation (October–March). Dots 
represent mean ± SD, n = 3–5. Dotted line represents annual average (October 2017–September 2018). 
Asterisk indicates significant difference ** p < 0.01, *** p < 0.001, ns = not significant. 
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Correlations among all measured physiological and immunological parameters were identified 
using the Spearman correlation test; significant results from all three seasons are summarised in Table 
1. Total protein concentration correlated positively with antibacterial activity both in summer 2017 
and winter 2017/2018, with rs values of 0.648 and 0.542, respectively. During summer 2017, protein 
concentration correlated positively with vitellogenin concentration (rs = 0.608) but negatively with 
phenoloxidase activity (rs = −0.81). Moreover, total lipid concentration correlated positively with 
carbohydrates (rs = 0.771) in summer 2018 and with haemocyte count in winter 2017/2018 (rs = 0.471). 

Figure 2. Seasonal development of antibacterial activity (a), the activity of phenoloxidase (b) and
haemocytes counts (c) in honey bee haemolymph. Red striped areas indicate summer generations of
honey bees (May–August), and blue area indicates winter generation (October–March). Dots represent
mean ± SD, n = 3–5. Dotted line represents annual average (October 2017–September 2018). Asterisk
indicates significant difference ** p < 0.01, *** p < 0.001, ns = not significant.
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Phenoloxidase activity increased slightly but not significantly in the winter period (Figure 2b).
This measured parameter showed a high degree of variability and no statistically significant differences
were detected among the monitored seasons.

In contrast with PO activity, the concentration of haemocytes was very stable during the monitored
period (Figure 2c). Haemocyte counts oscillated around 500 cells/µL, which was very close to the
annual average (429 cells/µL). There were noticeable increases in summer 2017 and winter 2017/2018,
with values around 600 cells/µL, while the summer 2018 value was around the annual average.
Statistical analysis did not reveal any differences in haemocyte concentration dependent on the season.

The experimental colony (colony 1) was compared to other two colonies (colony 2 and 3) in
June 2018 to address the variability of measured parameters (Figures S3 and S4). No significant
differences were observed among tested colonies except of PO activity which was lower in colony 1
than in both other tested colonies (Figure S4b).

In parallel with physiological and immunological parameters of honey bees, we followed changes
in temperature and humidity at the site of the apiary where honey bees were collected (Figure 3).
The highest recorded temperatures were 26.7 ◦C and 26.4 ◦C in August 2017 and August 2018,
respectively. The lowest temperature was −3.4 ◦C measured in March 2018. Relative humidity
oscillated between 50% and 90%, with the highest values in January and February 2018.
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Figure 3. Changes in humidity (blue squares, left y-axis) and temperature (red dots, right y-axis) at
the location of the apiary where honey bees were collected. Each point represents the mean value of
measurements three days before the collection and on the day of collection.

Correlations among all measured physiological and immunological parameters were identified
using the Spearman correlation test; significant results from all three seasons are summarised in
Table 1. Total protein concentration correlated positively with antibacterial activity both in summer
2017 and winter 2017/2018, with rs values of 0.648 and 0.542, respectively. During summer 2017,
protein concentration correlated positively with vitellogenin concentration (rs = 0.608) but negatively
with phenoloxidase activity (rs = −0.81). Moreover, total lipid concentration correlated positively with
carbohydrates (rs = 0.771) in summer 2018 and with haemocyte count in winter 2017/2018 (rs = 0.471).
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Table 1. Spearman rank correlations for the different variables which showed significant p-values for
the three seasons, summer 2017, winter 2017/2018, and summer 2018.

Summer 2017

Variable by Variable Spearman r p Value

Antibacterial activity Proteins 0.648 0.026
Proteins Phenoloxidase −0.81 0.022
Proteins Vitellogenin 0.608 0.04

Winter 2017/2018

Variable by Variable Spearman r p Value

Lipids Haemocytes 0.471 0.042
Antibacterial activity Proteins 0.542 0.017

Summer 2018

Variable by Variable Spearman r p Value

Lipids Carbohydrates 0.771 0.001

In the present study, the three principal components generated by PCA (PC1, PC2, and PC3)
explained 71.67% of the variability among the groups (summer 2017, winter 2017/2018, and summer
2018). PCA separated the workers from summer 2017, summer 2018, and winter 2017/2018 into
two major groups and correlated them with the physiological parameters (Figure 4). Summer 2017
and summer 2018 are clearly grouped together mainly on the left side of the graph, while winter
2017/2018 is on the right side. All variables are on the right side of the graph, which means that they
act together to separate summer from winter bees. However, each variable has its own significant
value. The separation of summer and winter groups is due to the most significant variables in
the data, their significance given by their factor loading, which ranges from +1 to −1. There were
two major significant variables, proteins and vitellogenin, with factor loadings of 0.811 and 0.775,
respectively. Lipids (factor loading 0.672) and antibacterial activity (factor loading 0.661) were also
significant variables, though weaker than proteins and vitellogenin. Haemocytes, phenoloxidase,
and carbohydrates exerted less influence on summer and winter groups in comparison with the
other parameters.
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Figure 4. Principal component analysis of variances (proteins, lipids, carbohydrates, vitellogenin,
antibacterial activity, phenoloxidase, and haemocytes). Component 1 (PC1) depicted as the x-axis
explains 35.86% of sample variability. Component 2 (PC2) depicted as the y-axis explains 19.37%
of sample variability. Black dots, red crosses, and blue squares represent values for summer 2017,
summer 2018, and winter 2017/2018, respectively. Green lines express the extent to which each variable
contributes to the explanation of the differences.
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Range of the values per each population for the three selected markers of longevity based on
PCA analysis were depicted as 75% percentile of the values (Figure 5). All of the values were divided
into quartiles; upper and lower quartiles in summer and winter populations were cut off, respectively.
These values were considered as the mixture of both populations or might be negatively affected
by unspecified environmental factors, i.e., pathologies, and therefore were excluded from the range.
Total concentration of proteins in short-living population ranged between 17 and 42 mg/mL, and its level
was elevated in long-living populations to 49–87 mg/mL. Similarly, level of vitellogenin was lower in
summer generation (0–10 mg/mL) in comparison to winter generation (14–26 mg/mL). The antibacterial
activity, measured as equivalent of lysozyme concentration, decreased in short-living honey bees
0–2 mg/mL and increased in long-living bees. The physiological ranges of tested parameters for each
population are summarized in Table 2.

Insects 2019, 10, x FOR PEER REVIEW 9 of 16 

 

Range of the values per each population for the three selected markers of longevity based 
on PCA analysis were depicted as 75% percentile of the values (Figure 5). All of the values were 
divided into quartiles; upper and lower quartiles in summer and winter populations were cut 
off, respectively. These values were considered as the mixture of both populations or might be 
negatively affected by unspecified environmental factors, i.e., pathologies, and therefore were 
excluded from the range. Total concentration of proteins in short-living population ranged 
between 17 and 42 mg/mL, and its level was elevated in long-living populations to 49–87 mg/mL. 
Similarly, level of vitellogenin was lower in summer generation (0–10 mg/mL) in comparison to 
winter generation (14–26 mg/mL). The antibacterial activity, measured as equivalent of 
lysozyme concentration, decreased in short-living honey bees 0–2 mg/mL and increased in long-
living bees. The physiological ranges of tested parameters for each population are summarized 
in Table 2. 

 
Figure 5. Graphical depiction of proposed physiological ranges in protein, vitellogenin, and 
antimicrobial level for each season. Red, blue, and grey areas represent short-living, long-living, and 
mixed populations, respectively. 

Table 2. Summarization of proposed physiological range for each selected longevity markers based 
on PCA analysis. 

 Short-Living Long-Living 
Proteins 17–42 mg/mL 49–87 mg/mL 

Vitellogenin 0–10 mg/mL 14–26 mg/mL 
Antibacterial activity 0–2 mg/mL 2.5–8 mg/mL 

4. Discussion 

Although it has been known for a long time that two distinct honey bee populations exist in the 
same colony, such knowledge based on observations of lifespan [12], knowledge concerning their 
biochemical parameters in general, is limited. Mostly, vitellogenin, as a storage and antioxidative 
protein, is associated with honey bee longevity [13,20,26,27,43,44]. However, other important 
parameters that may also characterise distinct populations of honey bees have received less attention. 
In an attempt to fill this gap and improve knowledge about longevity, the main purpose of the present 
study was to evaluate all fundamental physiological and immunological parameters of adult workers 
and correlate them with long-living and short-living generations of honey bees. In accord with 
published literature [13], we divided the populations of honey bees according to seasonal 
development. Bees from October to March were considered to belong to long-living population and 
bees from the rest of the year as belonging to short-living population. September and April were 

Figure 5. Graphical depiction of proposed physiological ranges in protein, vitellogenin, and
antimicrobial level for each season. Red, blue, and grey areas represent short-living, long-living,
and mixed populations, respectively.

Table 2. Summarization of proposed physiological range for each selected longevity markers based on
PCA analysis.

Short-Living Long-Living

Proteins 17–42 mg/mL 49–87 mg/mL
Vitellogenin 0–10 mg/mL 14–26 mg/mL

Antibacterial activity 0–2 mg/mL 2.5–8 mg/mL

4. Discussion

Although it has been known for a long time that two distinct honey bee populations exist in the same
colony, such knowledge based on observations of lifespan [12], knowledge concerning their biochemical
parameters in general, is limited. Mostly, vitellogenin, as a storage and antioxidative protein,
is associated with honey bee longevity [13,20,26,27,43,44]. However, other important parameters
that may also characterise distinct populations of honey bees have received less attention. In an
attempt to fill this gap and improve knowledge about longevity, the main purpose of the present study
was to evaluate all fundamental physiological and immunological parameters of adult workers and
correlate them with long-living and short-living generations of honey bees. In accord with published
literature [13], we divided the populations of honey bees according to seasonal development. Bees from
October to March were considered to belong to long-living population and bees from the rest of the
year as belonging to short-living population. September and April were considered as transition
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months between seasons and less attention was given to them, since there was a high probability of an
even distribution of both honey bee populations in the hive.

According to previous observations, higher contents of proteins and lipids in the haemolymph of
winter bees coincided with higher amounts of these compounds in their fat body [45]. This increase is
expected because honey bees have to create storage nutrients for the winter season. All organisms
including bees have to maintain stable concentrations of basic nutrients in their circulatory systems
and, in case of need, these nutrients can be replenished from storage tissues. In accordance, we found
levels of carbohydrates to be very stable during the year. Not surprisingly, we detected a rapid increase
in carbohydrates in September 2018, when sampling was conducted the day after the administration
of sucrose solution to the beehives as a replacement for honey. As this practice might interfere with
evaluation of the seasonal development of carbohydrate level as well as the levels of other nutrients in
haemolymph, it clearly shows that sampling for the evaluation of the suggested biochemical parameters
of longevity must be planned precisely in regard to colony treatment. During the year, the only sources
of proteins and carbohydrates for bees are pollen and nectar, respectively [46]. The differences between
summer 2017 and summer 2018 could have resulted from the variance of food sources during the
season [47].

Because the cellular part of the immune system in long-living generations was observed to be
limited, impaired phagocytosis and nodule formation [27,28], honey bees have to rely on the humoral
part of the immune system during the winter period. This corresponds with the higher antibacterial
activity of haemolymph in the winter population, which can be caused by inducible antibacterial
peptides such as apidaecin, hymenoptaecin, abaecin, or constitutive antibacterial compounds such as
lysozyme present in haemolymph [10,48–50]. Moreover, this increase in antibacterial activity correlates
with higher protein levels in the winter honey bee generation. On the other hand, some authors reported
reduced expression of immune genes in long-living generation and therefore higher susceptibility to
diseases [27,28,51]. Another important part of the humoral immune system—the activity of enzyme
phenoloxidase [52]—did not show significantly higher activity during winter. However, we observed a
small increasing trend in PO activity in the long-living generation consistent with Lourenço et al. [53],
who also showed an increase in PO activity in longer living workers. The honey bee genome possesses
only one gene coding the PO precursor prophenoloxidase, whereas three and nine are present in
Drosophila and Anopheles, respectively [49]. Furthermore, PO enzymatic activity is difficult to determine
because of the rapid activation and depletion of the PO system [52]. This dynamic process leads to highly
variable results, and it is necessary to use freshly collected haemolymph samples. Due to these reasons,
the parameter is unsuitable for the occasional testing of honey bee longevity in beekeeping praxis.

During the winter season, honey bees rely on honey storage as the main and only source of
food. This diet, composed mainly of carbohydrates, can influence the composition and function
of haemocytes in long-living honey bee populations [28,54] leading to the suppression of cellular
immunity. During winter, haemocytes participate less in the fight against pathogens than during the
summer season. As one of the main reasons, the high energetic costs of haemocytes maintenance was
identified in various organisms [55–57], which requires many resources that are subdued in winter.
Moreover, many authors described that the number of haemocytes in circulation depends on age of the
honey bee, and the strong reduction in haemocyte numbers was observed in old bees [24,25,29,30].
Our results showed a slight increase in the number of haemocytes during summer 2017 and winter
2017/2018 in comparison with the annual average but without any statistical significance. Although,
we were not able to confirm seasonal-dependent variability of haemocyte numbers, this might partially
be caused by sampling the bees of unspecific age.

Vitellogenin is a known internal storage glycolipoprotein synthesized in fat body cells and released
into haemolymph [58,59]. Previous studies, in addition to the present one, have considered a higher
level of vitellogenin in haemolymph to be a marker of winter bees [43,60–63]. Because higher amounts
of vitellogenin in haemolymph indicate the existence of long-living honey bees, it is considered to be a
major component important for overwintering [64]. To confirm that the most abundant 180 kDa form of
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vitellogenin is present in haemolymph [58,59], we used drone haemolymph sample as negative control.
As it was previously described, the drones have the vitellogenin only in the early stages of their life,
and it disappears as they are three or more weeks old [40,65–68]. Our results confirmed these findings;
however, the use of only one parameter measurement as a marker of longevity may not be sufficient.
According to principal component analysis, the total level of haemolymph proteins correlated highly
with physiological changes in the honey bee body during the winter season as well as with antibacterial
activity measured against the non-pathogenic model bacteria M. luteus. Our conclusions are supported
by previous studies [12,63,69,70]. Dainat et al. (2012) reported upregulation of immune genes as
predictive marker; concurrently, they mentioned Varroa infestation as predictive marker of colony
collapse disorder [10].

Because some authors described physiological differences in between honey bees reared in distinct
conditions [71] and even variations among colonies [72], we employed measurements of two more
colonies in June 2018. All tested hives did not differ in any physiological parameters (Figure S3).
Similarly, there is consistency among the colonies in measured immunological reactions (Figure S4),
except for PO activity which was lower in colony 1 than in others. However, the PO activity is a highly
variable parameter and was not found to be suitable for comparison of summer and winter honey
bee populations.

It is known that the weather can have significant influence on honey bee over wintering [73],
foraging activity [74] or viral loads [75] in hives. Instead of direct weather impact on honey bee
individuals, reduced pollen flow and therefore impaired nutrition can cause problems connected with
malnutrition [7,76,77]. Hence, we collected data about weather, specifically temperature and humidity
at the apiary location. During the experiment, the changes of weather parameters were typical for
temperate climate as characterised especially by low winter temperatures. Minor differences were
observed between years 2017 and 2018. However, for instance, the shift of temperature in April 2017
compared to April 2018, where the average temperature was under 10 ◦C in the latter, is supposed
to have an impact on colony development during the rest of the year. Similarly, almost twice as
high temperature in May 2018 compared to May 2017 could impact onset of brood rearing [78–80] or
phenology [81–83] of the bees in the colony.

The advantage of selected methods is relative simplicity; therefore, the beekeepers could cooperate
with a broad spectrum of laboratories in which the analyses can be implemented. However, if the
longer transport and storage time of bees or sampled haemolymph would be considered, the influence
of these factors on analyses results should be considered. Regarding the results of our study, the total
protein concentration and the levels of vitellogenin and antibacterial activity in haemolymph could
be used as relatively simple markers to determine the presence of long-living honey bees in a colony.
Based on the results of analyses and their comparison to physiological values provided in Figure 5,
beekeepers could adjust the care of their colonies. They can take practical precautions to protect
beehives. For example, uniting of two or more weak colonies to create strong one is a possible solution,
or several layers of insulation added to a beehive could be used for better protection of underdeveloped
colonies [23,35]. Moreover, treatment of short-living populations against pathogens could be reflected
in damaged long-living population. Therefore, underdeveloped colonies could be eliminated to save
money for feeding and other costs. These precautions based on analyses results might reduce winter
loses of honey bees.

The potential of selected markers to distinguish between summer and winter honey bee populations
in the temperate climate was demonstrated in current study. Since this study was performed on
one hive, future experiments would involve efforts to measure all three suggested parameters on
a large number of honey bee colonies to differentiate genotype and environmental variables and
correlate the results of analyses to the success overwintering rate. Based on this study, we suggest
two preventive samplings per year in June and October. When compared between each other and
with data provided in our study, the results of preventive samplings might provide useful insight into
the readiness of long-living bees which are indispensable for successful overwintering. The ability to
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reliably distinguish the two honey bee populations can provide a strong and useful tool for beekeepers.
They could estimate proportion of long-living bees in the hives and based on the results predict
potential overwintering problems. Our work provides basic knowledge about changes in physiological
and immunological parameters in established honey bee colonies over a long time period of almost two
years. The data collected can be used as a cornerstone for further studies estimating the proportions of
long-living honey bees in their colony.

5. Conclusions

This study compared differences between long-living and short-living populations of honey
bees. In detail, we described differences in the physiological and immunological parameters of both
populations. Winter honey bees had higher amounts of total proteins, lipids, and vitellogenin along
with higher levels of antibacterial activity in their haemolymph compared to summer bees. On the
basis of this knowledge and in accordance with the results of PCA, we propose levels of total proteins,
antibacterial activity, and vitellogenin as markers of long-living honey bee populations. Our results
can help beekeepers to confirm the presence of long-living bees in colonies.
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Does the pollen diet influence the production and expression of antimicrobial peptides in individual honey
bees? Insects 2018, 9, 79. [CrossRef]

8. Chauzat, M.-P.; Carpentier, P.; Martel, A.-C.; Bougeard, S.; Cougoule, N.; Porta, P.; Lachaize, J.; Madec, F.;
Aubert, M.; Faucon, J.-P. Influence of Pesticide Residues on Honey Bee (Hymenoptera: Apidae) Colony
Health in France. Environ. Entomol. 2009, 38, 514–523. [CrossRef]

9. Settele, J.; Bishop, J.; Potts, S.G. Climate Change Impacts on Cold Climates. Treatise Geomorphol. 2016, 2,
430–459.

10. Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Predictive markers of honey bee colony collapse.
PLoS ONE 2012, 7, e32151. [CrossRef]

11. van Dooremalen, C.; Gerritsen, L.; Cornelissen, B.; van der Steen, J.J.M.; van Langevelde, F.; Blacquière, T.
Winter survival of individual honey bees and honey bee colonies depends on level of varroa destructor
infestation. PLoS ONE 2012, 7, e36285. [CrossRef] [PubMed]

12. Fluri, P. Wie alt werden die Arbeitsbienen? Schweiz. Bienen Ztg. 1990, 113, 620–625.
13. Mattila, H.R.; Harris, J.L.; Otis, G.W. Timing of production of winter bees in honey bee (Apis mellifera) colonies.

Insectes Soc. 2001, 48, 88–93. [CrossRef]
14. Seeley, T.D.; Visscher, P.K. Survival of honeybees in cold climates: The critical timing of colony growth and

reproduction. Ecol. Entomol. 1985, 10, 81–88. [CrossRef]
15. Eischen, F.A. Overwintering performance of honey bee colonies heavily infested with Acarapis woodi.

Apidologie 1987, 18, 293–304. [CrossRef]
16. Bowen-Walker, P.L.; Martin, S.J.; Gunn, A. Preferential distribution of the parasitic mite, Varroa jacobsoni Oud.

on overwintering honeybee (Apis mellifera L.) workers and changes in the level of parasitism. Parasitology
1997, 114, 151–157. [CrossRef]

17. Guzmán-Novoa, E.; Eccles, L.; Calvete, Y.; Mcgowan, J.; Kelly, P.G.; Correa-Benítez, A. Varroa destructor is
the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in
Ontario, Canada. Apidologie 2010, 41, 443–450. [CrossRef]

18. Highfield, A.C.; El Nagar, A.; Mackinder, L.C.M.; Noël, L.M.L.J.; Hall, M.J.; Martin, S.J.; Schroeder, D.C.
Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 2009,
75, 7212–7220. [CrossRef]

19. Robinson, G.E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 1992, 37, 637–665.
[CrossRef]

20. Huang, Z.Y.; Robinson, G.E. Seasonal changes in juvenile hormone titers and rates of biosynthesis in honey
bees. J. Comp. Physiol. B 1995, 165, 18–28. [CrossRef]

21. Amdam, G.V.; Aase, A.L.T.; Seehuus, S.C.; Fondrk, M.K.; Norberg, K.; Hartfelder, K. Social reversal of
immunosenescence in honey bee workers. Exp. Gerontol. 2005, 40, 939–947. [CrossRef] [PubMed]

22. Fluri, P.; Lüscher, M.; Wille, H.; Gerig, L. Changes in weight of the pharyngeal gland and haemolymph
titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 1982, 28, 61–68.
[CrossRef]

23. Döke, M.A.; Frazier, M.; Grozinger, C.M. Overwintering honey bees: Biology and management. Curr. Opin.
Insect Sci. 2015, 10, 185–193. [CrossRef] [PubMed]

24. Fluri, P.; Wille, H.; Gerig, L.; Lüscher, M. Juvenile hormone, vitellogenin and haemocyte composition in
winter worker honeybees (Apis mellifera). Experientia 1977, 33, 1240–1241. [CrossRef]

25. Amdam, G.V.; Simões, Z.L.P.; Hagen, A.; Norberg, K.; Schrøder, K.; Mikkelsen, Ø.; Kirkwood, T.B.L.;
Omholt, S.W. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity
in honeybees. Exp. Gerontol. 2004, 39, 767–773. [CrossRef] [PubMed]

26. Fluri, P.; Bogdanov, S. Effects of artificial shortening of the photoperiod on honeybee (Apis mellifera) polyethism.
J. Apic. Res. 1987, 26, 83–89. [CrossRef]

27. Steinmann, N.; Corona, M.; Neumann, P.; Dainat, B. Overwintering is associated with reduced expression
of immune genes and higher susceptibility to virus infection in honey bees. PLoS ONE 2015, 10, e0129956.
[CrossRef]

28. Gätschenberger, H.; Azzami, K.; Tautz, J.; Beier, H. Antibacterial Immune Competence of Honey Bees (Apis
mellifera) Is Adapted to Different Life Stages and Environmental Risks. PLoS ONE 2013, 8, e66415. [CrossRef]

http://dx.doi.org/10.3390/insects9030079
http://dx.doi.org/10.1603/022.038.0302
http://dx.doi.org/10.1371/journal.pone.0032151
http://dx.doi.org/10.1371/journal.pone.0036285
http://www.ncbi.nlm.nih.gov/pubmed/22558421
http://dx.doi.org/10.1007/PL00001764
http://dx.doi.org/10.1111/j.1365-2311.1985.tb00537.x
http://dx.doi.org/10.1051/apido:19870401
http://dx.doi.org/10.1017/S0031182096008323
http://dx.doi.org/10.1051/apido/2009076
http://dx.doi.org/10.1128/AEM.02227-09
http://dx.doi.org/10.1146/annurev.en.37.010192.003225
http://dx.doi.org/10.1007/BF00264682
http://dx.doi.org/10.1016/j.exger.2005.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16169181
http://dx.doi.org/10.1016/0022-1910(82)90023-3
http://dx.doi.org/10.1016/j.cois.2015.05.014
http://www.ncbi.nlm.nih.gov/pubmed/29588007
http://dx.doi.org/10.1007/BF01922354
http://dx.doi.org/10.1016/j.exger.2004.02.010
http://www.ncbi.nlm.nih.gov/pubmed/15130671
http://dx.doi.org/10.1080/00218839.1987.11100742
http://dx.doi.org/10.1371/journal.pone.0129956
http://dx.doi.org/10.1371/journal.pone.0066415


Insects 2019, 10, 244 14 of 16

29. Schmid, M.R.; Brockmann, A.; Pirk, C.W.W.; Stanley, D.W.; Tautz, J. Adult honeybees (Apis mellifera L.)
abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 2008, 54, 439–444. [CrossRef]

30. Wilson-Rich, N.; Dres, S.T.; Starks, P.T. The ontogeny of immunity: Development of innate immune strength
in the honey bee (Apis mellifera). J. Insect Physiol. 2008, 54, 1392–1399. [CrossRef]

31. Le Conte, Y.; Alaux, C.; Martin, J.F.; Harbo, J.R.; Harris, J.W.; Dantec, C.; Séverac, D.; Cros-Arteil, S.;
Navajas, M. Social immunity in honeybees (Apis mellifera): Transcriptome analysis of varroa-hygienic
behaviour. Insect Mol. Biol. 2011, 20, 399–408. [CrossRef] [PubMed]

32. Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use
by honey bees. Apidologie 2010, 41, 295–311. [CrossRef]

33. Cremer, S.; Armitage, S.A.O.; Schmid-Hempel, P. Social Immunity. Curr. Biol. 2007, 17, 693–702. [CrossRef]
[PubMed]

34. Munch, D.; Kreibich, C.D.; Amdam, G.V. Aging and its modulation in a long-lived worker caste of the honey
bee. J. Exp. Biol. 2013, 216, 1638–1649. [CrossRef]

35. Free, J.B.; Racey, P.A. The effect of the size of honeybee colonies on food consumption, brood rearing and the
longevity of the bees during winter. Entomol. Exp. Appl. 1968, 11, 241–249. [CrossRef]

36. Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol.
2010, 103, S96–S119. [CrossRef] [PubMed]

37. Zollner, E.; Kirs, I.K. Uber die quantitative Bestimmung yon Lipoiden (Mikromethode) mittels der vielen
natiirliehen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion.
Z. Gesamte Exp. Med. 1962, 135, 545–561. [CrossRef]

38. Kodrík, D.; Socha, R.; Šimek, P.; Zemek, R.; Goldsworthy, G.J. A new member of the AKH/RPCH family that
stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera). Insect Biochem. Mol. Biol.
2000, 30, 489–498. [CrossRef]

39. Carroll, N.; Longley, R.; Roe, J. The Determination of Glycogen in Liver and Muscle by Use of Anthrone
Reagent. J. Biol. Chem. 1956, 220, 583–593. [PubMed]

40. Gatschenberger, H.; Gimple, O.; Tautz, J.; Beier, H. Honey bee drones maintain humoral immune competence
throughout all life stages in the absence of vitellogenin production. J. Exp. Biol. 2012, 215, 1313–1322.
[CrossRef] [PubMed]

41. Panzarino, O.; Hyršl, P.; Dobeš, P.; Vojtek, L.; Vernile, P.; Bari, G.; Terzano, R.; Spagnuolo, M.; de Lillo, E.
Rank-based biomarker index to assess cadmium ecotoxicity on the earthworm Eisenia andrei. Chemosphere
2016, 145, 480–486. [CrossRef] [PubMed]
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