Title:

Evaluation of stabilization rate of high and low molecular organic matter in cryoconite holes from the Arctic, Antarctic and Caucasus mountain ecosystems by 13C–NMR spectroscopy

Authors Name:   

Vyacheslav Polyakov, Evgeny Abakumov, Rustam Tembotov, Bulat Mavludov

Journal: Czech Polar Reports
Issue: 11
Volume: 2
Page Range: 215-232
No. of Pages: 18
Year: 2021
DOI:

10.5817/CPR2021-2-15

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

Cryoconite holes are considered as a place of accumulation of organomineral matter, including black carbon. It is formed as a result of incomplete combustion of carbon-containing fragments of natural and anthropogenic origin. Such material is transported by the wind and participates in the formation of cryoconite on the ice surface. The accumulation of organic matter in cryoconite can significantly affect the climate of our planet. To assess the processes of resistance to biodegradation of organic matter in cryoconite, molecular methods of analysis were used. This work presents the qualitative and quantitative evaluation of composition of humic acids, formed in selected cryoconite holes of various geographical regions. To identify them, the 13C–NMR spectroscopy method was used, which makes it possible to reveal trends in the accumulation of specific structural fragments and the rate of stabilization of cryoconite organic matter. The analysis of the elemental composition revealed that the most condensed macromolecules of humic acids accumulate in cryoconite holes on Mount Elbrus. In the molecules of humic acids, the accumulation of aliphatic structural fragments up to 71-73% occurs to a greater extent, while the composition of the aliphatic fragments depended on local precursors of humification. In the Arctic and Antarctic ecosystems, humic acids with relatively homogeneous composition are formed. These ecosystems are characterized by the domination of moss-lichen communities, which are characterized by a predominance of lipids and carbohydrates in the chemical composition. Black carbon is an important part of the planetary carbon cycle. Under the conditions of active deglaciation, cryoconite material can enter the periglacial zone, and under the action of soil microorganisms, it can become an additional source of greenhouse gases in the atmosphere.

 

Keywords:

black carbon, cryoconite, deglaciation, polar region, 13C-NMR spectroscopy

 

References:

ADDIN EN.REFLIST Abakumov, E. (2008): Content of available forms of nitrogen, potassium and phosphorus in ornithogenic and other soils of the Fildes Peninsula (King George Island, Western Antarctica). Biological Communications, 63: 109-116.

Abakumov, E., Lodygin, E. and Tomashunas, V. (2015): 13C-NMR and ESR characterization of humic substances isolated from soils of two siberian Arctic Islands. International Journal of Ecology. Article ID 390591. 7 p.

Abakumov, E., Maksimova, E. and Tsibart, A. (2018): Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods. Land Degradation & Development, 29: 2092-2101.

Abakumov, E. V., Gagarina, E. I., Sapega, V. F. and Vlasov, D. Y. (2013): Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations. Eurasian Soil Science, 46: 1219-1229.

Acosta Navarro, J. C., Varma, V., Riipinen, I., Seland, Ø., Kirkevåg, A., Struthers, H., Iversen, T., Hansson, H. C. and Ekman, A. M. L. (2016): Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience, 9: 277-281.

Akilan, A., Abdul Azeez, K. K., Schuh, H., Padhy, S. and Kumar Kotluri, S. (2019): Perturbations in atmospheric gaseous components over coastal Antarctica detected in GPS signals and its natural origin to volcanic eruption. Polar Science, 19: 69-76.

Alexis, M. A., Rumpel, C., Knicker, H., Leifeld, J., Rasse, D., Péchot, N., Bardoux, G. and Mariotti, A. (2010): Thermal alteration of organic matter during a shrubland fire: A field study. Organic Geochemistry, 41: 690-697.

Amaro, E., Padeiro, A., Mão De Ferro, A., Mota, A. M., Leppe, M., Verkulich, S., Hughes, K. A., Peter, H.-U. and Canário, J. (2015): Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Marine Pollution Bulletin, 97: 523-527.

Andreae, M. O., Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, 6: 3131-3148.

Baccolo, G., Nastasi, M., Massabò, D., Clason, C., Di Mauro, B., Di Stefano, E., £okas, E., Prati, P., Previtali, E., Takeuchi, N., Delmonte, B. and Maggi, V. (2020): Artificial and natural radionuclides in cryoconite as tracers of supraglacial dynamics: Insights from the Morteratsch glacier (Swiss Alps). Catena, 191: 104577.

Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E. M., Stoof, G., Westermann, S., Wischnewski, K., Wille, C. and Hubberten, H. W. (2013): Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998-2011). Biogeosciences, 10: 2105-2128.

Bolshiyanov, D. Y., Sokolov, V. T., Yozhikov, I. S., Bulatov, R. K., Rachkova, A. N., Fedorov, G. B. and Paramzin, A. S. (2016): Conditions of the alimentation and the variability of glaciers of the Severnaya Zemlya Archipelago from observations of 2014–2015. Ice and Snow, 56: 358-368.

Bond, T. C., Bergstrom, R. W. (2006): Light absorption by carbonaceous particles: An investigative review. Aerosol Science and Technology, 40: 27-67.

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. and Zender, C. S. (2013): Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118: 5380-5552.

Bronnikova, M. A. (2011): Interpretation of micromorphological features of soils and regoliths. Eurasian Soil Science, 44: 824-828.

Casey, K. A., Kaspari, S. D., Skiles, S. M., Kreutz, K. and Handley, M. J. (2017): The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica. Journal of Geophysical Research: Atmospheres, 122: 6592-6610.

Celis, J. E., Barra, R., Espejo, W., González-Acuña, D. and Jara, S. (2014): Trace Element Concentrations in Biotic Matrices of Gentoo Penguins (Pygoscelis Papua) and Coastal Soils from Different Locations of the Antarctic Peninsula. Water, Air, & Soil Pollution, 226: 2266.

Christner, B. C., Kvitko, B. H. and Reeve, J. N. (2003): Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7: 177-183.

Chukov, S. N., Abakumov, E. V. and Tomashunas, V. M. (2015): Characterization of humic acids from antarctic soils by nuclear magnetic resonance. Eurasian Soil Science, 48: 1207-1211.

Dickens, W. A., Kuhn, G., Leng, M. J., Graham, A. G. C., Dowdeswell, J. A., Meredith, M. P., Hillenbrand, C. D., Hodgson, D. A., Roberts, S. J., Sloane, H. and Smith, J. A. (2019): Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode. Scientific Reports, 9: 14606.

Dziadowiec, H., Gonet, S. and Plichta, W. 1994. Properties of humic acids of Arctic tundra soils in Spitsbergen. Polish Polar Research, 15: 71.

Ejarque, E., Abakumov, E. (2016): Stability and biodegradability of organic matter from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth, 7: 153-165.

Feldmann, J., Levermann, A. and Mengel, M. (2019): Stabilizing the West Antarctic Ice Sheet by surface mass deposition. Science Advances, 5: 4132.

Flanner, M. G., Zender, C. S., Randerson, J. T. and Rasch, P. J. (2007): Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research: Atmospheres, № 112.

Gedgafova, F. V., Gorobtsova, O. N., Uligova, T. S., Tembotov, R. K. and Khakunova, E. M. (2019): Changes in biological activity of mountain gray forest soils of the Central Caucasus (Terskiy variant of vertical zonation within Kabardino-Balkaria) resulting from agricultural use. Eurasian Soil Science, 4: 23-30.

Groenewerg, W. J., Beunk, F. (1992): The petrography and geochemistry of the King George Island Supergroup and the Admiralty Bay Group volcanics, South Shetland Islands. In: J. Lopez-Martinez (ed.): Geologia de la Antartida Occidental, pp. 46–60. Salamanca: III Congreso Geologico de Espanay VIII Congresso Latinoamericano de Geologia.

Hara, K., Sudo, K., Ohnishi, T., Osada, K., Yabuki, M., Shiobara, M. and Yamanouchi, T. (2019): Seasonal features and origins of carbonaceous aerosols at Syowa Station, coastal Antarctica. Atmospheric Chemistry and Physics, 19: 7817-7837.

Hatcher, P. G., Schnitzer, M., Dennis, L. W. and Maciel, G. E. (1981): Aromaticity of humic substances in soils. Soil Science Society of America Journal, 45: 1089-1094.

Hegg, D. A., Warren, S. G., Grenfell, T. C., Sarah, J. D. and Clarke, A. D. (2010): Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmospheric Chemistry and Physics, 10: 10923-10938.

Khakunova, E. M., Gorobtsova, O. N., Gedgafova, F. V., Uligova, T. S. and Tembotov, R. Kh. (2018): Change in biological activity of Central Caucasus mountain Chernozems under agricultural use (within the boundaries of the Elbrus vertical zonation pattern in Kabardino-Balkaria). Eurasian Soil Science, 3: 12-18.

Knicker, H. (2007): How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85: 91-118.

Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. and Pfeiffer, E.-M. (2013): Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19: 1160-1172.

Lodygin, E., Beznosikov, V. and Abakumov, E. (2017): Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East. Polish Polar Research, 38: 125-147.

Lodygin, E. D., Beznosikov, V. A. (2010): The molecular structure and elemental composition of humic substances from Albeluvisols. Chemistry and Ecology, 26: 87-95.

Lodygin, E. D., Beznosikov, V. A. and Vasilevich, R. S. (2014): Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study). Eurasian Soil Science, 47: 400-406.

Lupachev, A., Abakumov, E. and Gubin, S. (2017): The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in cryosols of the Kolyma Lowland (North Yakutia, Russia). Geosciences, 7: 24.

Manousakas, M., Popovicheva, O., Evangeliou, N., Diapouli, E., Sitnikov, N., Shonija, N. and Eleftheriadis, K. (2020): Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova. Tellus B: Chemical and Physical Meteorology, 72: 1-14.

Nordli, Ø., Przybylak, R., Ogilvie, A. E. J. and Isaksen, K. (2014): Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898-2012. Polar Research, 33.

Notz, D., Stroeve, J. (2016): Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 345: 747-750.

Orlov, D. S. (1990): Soil humic acids and general theory humification. Mosсow, Moscov state University. 327 p.

Pengerud, A., Dignac, M.-F., Certini, G., Strand, L. T., Forte, C. and Rasse, D. P. (2017): Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry, 135: 277-292.

Polyakov, V., Abakumov, E. (2020a): Stabilization of organic material from soils and soil-like bodies in the Lena River Delta (13C-NMR spectroscopy analysis). Spanish Journal of Soil Science, 10: 170-190.

Polyakov, V., Abakumov, E. and Mavlyudov, B. (2020b): Black carbon as a source of trace elements and nutrients in Ice Sheet of King George Island, Antarctica. Geosciences, 10.

Polyakov, V., Abakumov, E. V. (2020b): Humic acids isolated from selected soils from the Russian Arctic and Antarctic: Characterization by Two-Dimensional 1H-13C HETCOR and 13C CP/Mas NMR Spectroscopy. Geosciences, 10.

Polyakov, V., Zazovskaya, E. and Abakumov, E. (2019a): Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen. Polish Polar Research, 40: 105.

Polyakov, V. I., Abakumov, E. V. and Tembotov, R. (2020c): Black carbon as a factor in deglaciation in polar and mountain ecosystems: A Review. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 52: 6-33.

Polyakov, V. I., Chegodaeva, N. A. and Abakumov, E. V. (2019b): Molecular and elemental composition of humic acids isolated from selected soils of the Russian Arctic. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 47: 6-21.

Reid, J. S., Koppmann, R., Eck, T. F. and Eleuterio, D. P. (2005): A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5: 799-825.

Rototaeva, O. V., Nosenko, G. A., Kerimov, A. M., Kutuzov, S. S., Lavrentiev, I. I., Nikitin, S. A., Kerimov, A. A. and Tarasova, L. N. (2019): Changes of the mass balance of the Garabashy Glacier, Mount Elbrus, at the turn of 20th and 21st centuries. Ice and Snow, 59.

Schaefer, C. E. G. R., Simas, F. N. B., Gilkes, R. J., Mathison, C., Da Costa, L. M. and Albuquerque, M. A. (2008): Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. Geoderma, 144: 104-115.

Semenov, V. M., Ivannikov, L. A. and Tulina, A. S. (2009): Stabilization of organic matter in the soil. Agrochimia, 10: 77-96.

Serreze, M. C., Holland, M. M. and Stroeve, J. (2007): Perspectives on the Arctic´s Shrinking Sea-Ice Cover. Science, 315: 1533.

Singh, P., Tsuji, M., Singh, S. M. and Takeuchi, N. (2020): Contrasting patterns of microbial communities in glacier cryoconite of Nepali Himalaya and Greenland, Arctic. Sustainability, 12: 6477.

Stone, R. S., Sharma, S., Herber, A., Eleftheriadis, K. and Nelson, D. W. (2014): A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements. ELEMENTA - Science of the Antropocene, 000027.

Swift, R. S. (1996): Organic matter characterization. Methods of Soil Analysis, 1011-1069.

Szymañski, W. (2017): Chemistry and spectroscopic properties of surface horizons of Arctic soils under different types of tundra vegetation – A case study from the Fuglebergsletta coastal plain (SW Spitsbergen). CATENA, 156: 325-337.

Szymañski, W., Skiba, M., Wojtuñ, B. and Drewnik, M. (2015): Soil properties, micromorphology, and mineralogy of Cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma, 253-254: 1-11.

Tunved, P., Ström, J. and Krejci, R. (2013): Arctic aerosol life cycle: Linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmospheric Chemistry and Physics, 13: 3643-3660.

van Krevelen, D. W. (1950): Studies of gas absorption. VI. A graphical representation for the efficiency of physical absorption. Recueil des Travaux Chimiques des Pays-Bas, 69: 503-508.

Vasilevich, R., Lodygin, E., Beznosikov, V. and Abakumov, E. (2018): Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers. Science of The Total Environment, 615: 1229-1238.

Vasilevich, R. S., Beznosikov, V. A. and Lodygin, E. D. (2019): Molecular structure of humus substances in permafrost peat mounds in forest-tundra. Eurasian Soil Science, 52: 283-295.

Wang, M., Overland, J. E. (2009): A sea ice free summer Arctic within 30 years? Geophysical Research Letters, 36.

Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., De Gouw, J. A., Fahey, D. W., Froyd, K. D., Holloway, J. S., Middlebrook, A., Miller, L., Montzka, S., Murphy, D. M., Peischl, J., Ryerson, T. B., Schwarz, J. P., Spackman, J. R. and Veres, P. (2009): Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 36.

Zolotarev, E. A., Kharkovets, E. G. (2012): Development of glaciers of Mount Elbrus after the little ice age. Ice and Snow, 52: 15-22.

Zubrzycki, S., Kutzbach, L. and Pfeiffer, E. M. (2014): Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth, 5: 595-609.

Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D. and Brenner, A. C. (2017): Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61: 1019-1036.

 

 

Web sources / Other sources

 

[1] Council, A. (2019): Expert Group on Black Carbon and Methane - Summary of Progress and Recommendations 2019.

 

[2] AMAP 2015. AMAP Assessment (2015): Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway.

 

[3] WRB, F. 2015. IUSS Working Group WRB World Reference Base for Soil Resources 2014, update 2015. 

Notes: