Title:

Ecological and biological features of Triglochin maritima L. in the biotopes of the littoral zone with different degree of flooding on the coast of the White Sea

Authors Name:   

Anzhella V. Sonina, Elena N. Terebova, Tamara Yu. Dyachkova, Kira V. Morozova, Nadezhda A. Elkina

Journal: Czech Polar Reports
Issue: 11
Volume: 2
Page Range: 233-252
No. of Pages: 20
Year: 2021
DOI:

10.5817/CPR2021-2-16

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

The study of Triglochin maritima L. was carried out on the Pomor (western) coast of the White Sea, in the Republic of Karelia (64°22'81"N, 35°93'14"E). Morphological analysis of aboveground and underground parts of the clones was performed on virginal plants. Anatomical analysis of leaf sheaths of the current year shoots, rhizomes and adventitious roots was carried out. The viability of pollen was assessed by determining the relative share of normally developed and malformed pollen grains. The content of heavy metals was determined in the soil, sea water and plant samples. The study was carried out on a model transect in the littoral zone on three test plots representing the lower littoral; the middle and the upper littoral zones. Adaptation to wave and storm impact was manifested in a well-developed system of underground organs. In the lower littoral, underground part surpasses the aboveground vegetative organs in terms of the mass and the formation of mechanical tissues. This allows the plants to anchor stronger in the substrate. Pollen analysis confirmed the adaptability of T. maritima plants to the conditions of the lower littoral by a high percentage of normal and, consequently, fertile pollen, which ensures sexual reproduction of the species. T. maritima can be considered as a Fe hyperaccumulator as the plant accumulates very high levels of Fe (22–34 g kg-1), especially in the lower and middle littoral zones, both in underground and aboveground organs. The ability of T. maritima plants to actively deposit metals was revealed on the basis of the coefficient of biological absorption of metals and makes it possible to suggest potential possibility of using the species in phytoremediation technologies on coastal territories.

 

Keywords: anatomy of vegetative organs, Triglochin maritima, clone morphology, pollen grain, heavy metal, coefficient of biological absorption, hyperaccumulator
 

References:

Batalov, A. A., Giniyatullin, R. Kh. and Kagarmanov, I. R. (1991): Salicaceae – their participation in the formation of vegetation cover in technogenic landscapes of the Southern Urals. In: Proceedings of the conference «Flora and vegetation of Siberia and the Far East» dedicated to memory of L.M.Cherepnin. Krasnoyarsk, pp. 73–74. (In Russian).

Bobrov, Yu. A. (2018): Life forms of Triglochin maritima L. and Triglochin palustris L. in the north of European Russia. Bulletin of the Tverskoy State University. Ser. Biology and Ecology, 2: 139-146. (In Russian).

Borzenkova, R. A., Khramtsova, E. V. (2006): Determination of mesostructural characteristics of the photosynthetic apparatus of plants. Publishing house of the Ural University, Yekaterinburg, 26 p. (In Russian).

Bose, J., RodrigoMoreno, A. and Shabala, S. (2014): ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65 (5): 1241-1257. doi: 10.1093/jxb/ert430

Buffington, K., Goodman, A.C., Freeman, C. and Thorne K.M. (2020): Testing the interactive effects of flooding and salinity on tidal marsh plant productivity. Aquatic Botany, 164 (9): 103231. doi: 10.1016/j.aquabot.2020.103231

Buzgo, M., Douglas, E., Soltis, D. E., Soltis, P. S., Kim, S., Ma, H., Hauser, B. A., Lebens-Mack, J. and Johansen, B. (2006): Perianth Development in the Basal Monocot Triglochin maritima (Juncaginaceae). A Journal of Systematic and Evolutionary Botany, 22 (1): 107-125. doi: 10.5642/aliso.20062201.09

Choubey, S., Godboles, S. (2021): A review on bio sorption – an environment friendly method for removal of heavy metals from industrial wastes. International Journal of Recent Scientific Research Research, 12 (03): 41191-41197. doi: 10.24327/IJRSR

Cong, M., Zhao, J., Lü, J., Ren, Z. and Wu, H. (2016): Homologous cloning, characterization and expression of a new halophyte phytochelatin synthase gene in Suaeda salsa. Chinese Journal of Oceanology and Limnology, 34 (5) : 1034-1043. doi: 10.1007/s00343-016-4382-0

Davy, A. J., Bishop, G. F. (1991): Triglochin maritima L. Journal of Ecology, 79 (2): 531-555.

Dzhamalov, R. G., Mironenko, A. A., Myagkova, K. G., Reshetnyak, O. S. and Safronova, T. I. (2019): Space–Time Analysis of the Hydrochemical Composition and Pollution of Water in the Northern Dvina Basin. Water Resources, 46 (2): 149-160. doi: 10.1134/S009780781902 0040

Edge, R. S., Sullivan, Mjp., Pedley, S. M. and Mossman, H. L. (2020): Species interactions modulate the response of saltmarsh plants to flooding. Annals of Botany, 125 (2): 315-324. doi: 10.1093/aob/mcz120

Gargouri, M., Magne, C., Dauvergne, X., Ksouri, R., El Feki, A., Metges, M.–A. G. and Talarmin, H. (2013): Cytoprotective and antioxidant effects of the edible halophyte Sarcocornia perennis L. (swampfire) against lead–induced toxicity in renal cells. Ecotoxicology and Environmental Safety, 95: 44-51.

Gordeev, V. V., Shevchenko, V. P., Korobov, V. B., Kochenkova, A. I., Starodymova, D. P., Belorukov, S. K., Lokhov, A. S., Yakovlev, A. E., Chultsova, A. L., Zolotyh, E. O. and Lobkovsky, L. I. (2021): Concertation and chemical elements in the water and suspended matter of the Severnaya Dvina River and their annual gross runoff into the White Sea. Doklady Earth Sciences, 500 (1): 95-102. doi: 10.1134/S1028334X21090099

Greco, M., Saez, C. A., Conteras, R. A., Rodriguez–Rojas, F., Bitonti, M. B. and Brown, M. T. (2019): Cadmium and/or copper excess induce interdependent metal accumulation, DNA methylation, induction of metal chelators and antioxidant defences in the seagrass Zostera marina. Chemosphere, 224: 11-119. doi: 10.1016/j.chemosphere.2019.02.123

Ilyin, G. V., Usygina, I. S. and Kasatkina, N. E. (2015): Geoecological state of seas in the environment in the Russian Arctic under the present technogenic stresses. Bulletin of the Kola Science Center of the Russian Academy of Sciences, 21: 82-93. (In Russian).

Halbritter, H. (2016): Triglochin maritima. B: PalDat Palynological database. https://www. paldat.org/pub/Triglochin_maritima/302660;jsessionid=4ED626B384C11AB5C6E6E40078F4945A; access 2020-07-04

Krzesłowska, M. (2011): The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33: 35-51. doi: 10.1007/s11738-010-0581-z

Kushwaha, A., Rani, R., Kumar, S. and Gautam, A. (2016): Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. Environmental Reviews, 24(1): 39-51. doi: 10.1139/er-2015-0010

Liang, L., Liu, W., Huo X., Li, S. and Zhou, Q. (2017):  Phytoremediation of Heavy MetalContaminated Saline Soils Using Halophytes: Current Progress and Future Perspectives Environmental Reviews, 25: 269-281. doi: 10.1139/er-2016-0063

Luo, H., Li, H., Zhang, X. and Fu, J. (2011): Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology, 20(4): 770-778. doi: 10.1007/s10646-011-0628-y

Manousaki, E., Kalogerakis, N. (2011): HalophytesAn emerging trend in phytoremediation. International Journal of Phytoremediation, 13(10): 959-969. doi: 10.1080/15226514.2010. 532241

Markovskaya, E. F., Gulyaeva, E. N. (2020): Role of stomata in adaptation of Plantago maritima L. plants to tidal dynamics on the White Sea coast. Russian Journal of Plant Physiology, 67 (1): 75-83. doi: 10.1134/S1021443719060086

Milić, D., Luković, J., Ninkov, J., Zeremski-Škorić, T., Zorić, L., Vasin, J. and Milić, S. (2012): Heavy metal content in halophytic plants from inland and maritime saline areas. Central European Journal of Biology, 7(2): 307-317. doi: 10.2478/s11535-012-0015-6

Minin, E. M. (2014): Current state and development prospects of the Arctic region of Russia. Bulletin of the Moscow State Linguistic University, 23(709): 103. (In Russian).

Mokronosov, A. T., Borzenkova, R. A. (1978): Methods for the quantitative assessment of the structure of the functional activity of photosynthetic tissues and organs. Works on Applied Botany, Genetics and Breeding, 61(3): 119-133. (In Russian).

Morozova, K. V., Anisimova, D. I. (2015): Anatomical and morphological characteristics of the leaves of Triglochin maritima L. in coastal communities on the Pomor coast of the White Sea (Karelia). Problems of Modern Science and Education, 7(37): 40-44. (In Russian).

Nagalevsky, V. Ya. (2001): Halophytes of the North Caucasus. Publishing house of the Kuban State University, Krasnodar, 246 p. (In Russian).

Naila, A., Meerdink, G., Jayasena, V., Sulaiman, A.Z., Ajit, A.B. and Graziella Berta, G. (2019): A review on global metal accumulators–mechanism, enhancement, commercial application, and research trend. Environmental Science and Pollution Research, 26: 26449-26471. doi: 10.1007/s11356-019-05992-4

Novikov, M. A. (2017): On the background values of heavy metal content in bottom sediments of the Barents Sea. Bulletin of the Murmansk State Technical University, 20(1/2): 280-288. (In Russian). doi: 10.21443/1560-9278-2017-20-1/2-280-288

Pausheva, Z. P. (1980): Workshop on plant cytology. Agropromizdat, Moscow, 304 p. (In Russian).

Pendias, A. (2010): Trace Elements in Soils and Plants. 4th edition. Boca Raton, FL, USA: CRC Press/Taylor & Francis Group, 548 р. doi: 10.1017/S0014479711000743

Pelloux, J., Rusterucci, C. and Mellerowicz, E. J. (2007): New insights into pectin methyl-esterase structure and function. Trends Plant Science, 12: 267-277. doi: 10.1016/j.tplants.2007. 04.001

Pires, E. F, Medeanic, S. (2006): Palynological implications of the preference of Triglochin in Holocene palaeoenvironmental reconstructions in the Coastal plain of Rio Grande do sul state, Brazil. Revista Española de Micropaleontología, 38(1): 93-101.

Polynov, B. B. (1956): Essay on the development of soil theory as a branch of natural science. Moscow, pp. 659–726. (In Russian).

Richter, J., Ploderer, M., Mongelard, G., Gutierrez, L. and Hauser, M-T. (2017): Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements. Frontiers in Plant Science, 8: 1554. doi: 10.3389/fpls.2017.01554

Robichaud, K., Misra, M., Smith, R. W. and Schneiger, I. A.H. (2021): Adsorption of heavy metals by aquatic plant roots. In book: Water–Rock Interaction, 934 p. doi: 10.1201/ 9780203734049

Seregin, I. V., Kozhevnikova, A. D. (2008): Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russian Journal of Plant Physiology, 55(1): 1-22. doi: 10.1134/S1021443708010019

Sergienko, L. A. (2008): Flora and vegetation of the Arctic coasts and adjacent territories. Publishing house of PertSU, Petrozavodsk, 225 p. (In Russian).

Sergienko, L. A., Dyachkova, T. Yu. and Androsova, V. I. (2017): Habitat characteristics and population structure of Triglochin maritima L. (Juncaginaceae) in the intertidal zone of the littoral of the White Sea. Proceedings of Petrozavodsk State University. Ser. Natural and Technical Sciences, 2: 57-63.

Sidorova, V. A., Svyatova, E. N. and Tseits, M. A. (2015): Spatial variability of the properties of marsh soils and their impact on vegetation. Eurasian Soil Science, 48 (3): 223-230. doi: 10.1134/S1064229315030114

Tan, K. H. (2005): Soil Sampling, preparation and analysis, 2nd Edition. By K. H. Tan. Boca Raton, Florida, USA: Taylor and Francis, 680 p.

Terebova, E. N., Markovskaya, E. F., Androsova, V. I., Galibina, N. A. and Kaipiainen, E. (2017): Potential for Salix schwerinii Е. Wolf to uptake heavy metals in the contaminated territories of mining industry in the north-west Russia. Siberian Journal of Forest Science, 1: 74-86.

Terebova, E., Markovskaya, E., Androsova, V., Pavlova, M. and Oreshnikova, N. (2020) Cell wall functional activity and metal accumulation of halophytic plant species Plantago maritima and Triglochin maritima on the White Sea littoral zone (NW Russia). Czech Polar Reports, 10 (2): 169-188. doi: 10.5817/CPR2020-2-14

Tsvelev, N. N. (2000): Keys to vascular plants of Northwestern Russia (Leningrad, Pskov, Novgorod regions). Publishing house of SPKhFA, Sankt-Petersburg, 781 p. (In Russian).

Van Osten, M. J., Maggio, A. (2015): Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany, 111: 135-146. doi: 10.1016/j.envexpbot.2014.11.010

Vorobeva, L. A. (2006): Theory and practice of chemical analysis of soils. GEOS Publishers, Moscow, 400 p. (In Russian)

Wali, M., Gunse, B., Lugany, M., Corrales, I., Abdelly, C., Poschenrieder, C. and Ghnaya, T. (2016): High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis. Planta, 244(2): 333-346. doi: 10.1007/s00425-016-2515-5

Wang, Y. J., Zhou, L. M., Zheng, X. M., Qian, P. and Wu, Y.H. (2013): Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River

Estuary, China. Environmental Science and Pollution Research, 20(3): 1675-1685. doi: 10.1007/ s11356-012-1082-y.

Yadav, S. (2010): Heavy Metals Toxicity in Plants: An Overview on the Role of Glutathione and Phytochelatins in Heavy Metal Stress Tolerance of Plants. South African Journal of Botany, 76(2): 167-179. doi: 10.1016/j.sajb.2009.10.007

Zhang, Z.–C., Chen, B.–X. and Qiu, B.–S. (2010): Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in nonresistant plants. Plant Cell Environmental, 33(8): 1248-1255. doi: 10.1111/j.1365-3040.2010.02144.x

Zheng, J–C, Liu, H–Q, Feng, H. M. and Yu, H–Q. (2016): Competitive sorption of heavy metals by water hyacinth roots. Environmental Pollution, 219: 837-845. doi: 10.1016/j.envpol.2016. 08.001


 

Web sources / Other sources

 

[1] Order of Ministry of Agricultyre of the Russian Federation of Decemder 13, 2016. №. 552.  (2016). On the approval of water quality standards for water bodies of fishery value, including the standards of maximum permissible concentrations of harmful substances in the waters of water bodies of fishery value. (In Russian).

[2] State Report on the State of the Evironment of the Republic of Karelia in 2019 (2020). In: A. N. Gromtsev (eds.), Petrozavodsk, 248 p. (In Russian). 

Notes: