Title:

Soil microorganisms in the urban ecosystems of the russian subarctic (Murmansk region, Apatity)

Authors Name:   

Maria V. Korneykova, Vera V. Redkina, Nadezhda V. Fokina, Vladimir A. Myazin, Anastasia S. Soshina

Journal: Czech Polar Reports
Issue: 11
Volume: 2
Page Range: 333-351
No. of Pages: 19
Year: 2021
DOI:

10.5817/CPR2021-2-23

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

A comprehensive study of the quantitative and qualitative parameters of soil microfungi, bacteria and algae communities in the Apatity city, located in the subarctic zone of Russia, was carried out for the first time. Urban soil samples were taken from various landuse zones (residential, recreational) and compared to arable and forest soils. In the residential zone, a decrease in the number of microfungi in the topsoil horizon to 1.1 thous. CFU/g compared to 22.7 thous. CFU/g in forest soil was revealed. In the residential zone, an increase was found in the number of saprotrophic bacteria to 7.8 million cells g-1 and oligotrophic to 10.9 million cells g-1 compared to 2.6 million cells g-1 and 1.8 million cells g-1 respectively in forest soils. In the recreational zone, the number of soil microorganisms was similar to that in the forest. A decrease in the species diversity of microfungi in the soil of the residential zone and an increase in the diversity of soil algae were revealed. Among the dominant species of fungi in urban soils, atypical species, including pathogenic ones for humans (Penicillium dierckxii, Stachybotris echinatus, Fusarium sp.), were found. In the algal community, diatoms, yellow-green algae, and cyanobacteria appeared in urban soils in comparison with forest soil. As a result of changes in the quantitative and qualitative indicators of soil microbial communities, a decrease in the enzymatic activity of soils has been noted. This may indicate a weakening of the ecosystem functions of urban soils and an increase in the degree of toxicity for living organisms and humans.
 

Keywords: microfungi, bacteria, algae, biodiversity, enzymatic activity
 

References:

Aksenova, N. P., Baranova, O. G. (2010): Short observe of soil cyanoprocaryotes and algae coenoses biodiversity at the Izhevsk city. Vestnik Udmurskogo universiteta. Seriya "Biologiya. Nauki o Zemle" [Bulletin of the Udmurt University. SeriesBiology. Earth Sciences"], 1: 27-31. (In Russian).

Andreeva, V. M. (1998): Soil and aerophilic green algae. Nauka Publ., Moscow, Russia, 348 p. (In Russian).

Artamonova, V. S. (2002): Microbiology of anthropogenically transformed soils of Western Siberia. SO RAN Publ., Novosibirsk, Russia, 225 p. (In Russian).

Bachura, Yu. М., Blagodatnova, A. G. (2015): Phytocenological group structure of soil algae and cyanobacteria of urban lawn (on the example of Novosibirsk and Gomel). Vestnik Novosibirskogo gosudarstvennogo pedagogicheskogo universiteta [Bulletin of the Novosibirsk State Pedagogical University], 5(3): 82-93. (In Russian). doi: 10.15293/2226-3365.1503.08

Baranova, E. V., Ilyshkina, L. N. and Polyakova, A.V. (2010): The change of enzymatic activity of soils under city conditions. Antropogennaya transformatsiya prirodnoy sredy [Anthropogenic transformation of the natural environment], 1: 144-149. (In Russian).

Beroigui, M., Naylo, A., Walczak, M., Hafidi, M., Charzyñski, P., Œwitoniak, M., Ró¿añski, S. and Boularbah, A. (2020): Physicochemical and microbial properties of urban park soils of

the cities of Marrakech, Morocco and Toruñ, Poland: Human health risk assessment of fecal coliforms and trace elements. Catena, 194: 104673. doi: 10.1016/j.catena.2020.104673

Carvalhais, L. C., Rincon-Florez, V. A., Brewer, P. B., Beveridge, C. A., Dennis, P. G. and Schenk, P. M. (2019): The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 9: 18-26. doi: 10.1016/j.rhisph. 2018.10.002

Davydov, D. A., Redkina, V. V. (2021): Algae and cyanoprokaryotes on naturally overgrowing ash dumps of the Apatity Thermal Power Station (Murmansk region). Seriya Biogeografiya [Biogeography Series], 1: 51-68. (In Russian). doi: 10.17076/bg1270

Demin, V. I., Kozelov, B. V., Yelizarova, N. I. and Menshov, Yu. V. (2016): Geomorphological factors of the formation of the “heat island” in Apatity. Physics of Auroral Phenomena, 39(1): 154-157. (In Russian).

Domracheva, L. I., Dabakh, E. V., Kondakova, L. V. and Varaksina, A. I. (2006): Algal-mycological complexes in soils upon their chemical pollution. Eurasian Soil Science, 39: 591-597. doi: 10.1134/S1064229306130151

Domsch, K.H., Gams, W. and Anderson, T. H. (2007): Compendium of soil fungi. 2nd ed. IHW Verlag, Ehing, Germany, 672 p.

Dorokhova, M. F., Kosheleva, N. E. and Terskaya, E. V. (2015): Algae and cyanobacteria in soils of Moscow. American Journal of Plant Sciences, 6(15): 2461-2471. doi: 10.4236/ajps. 2015.615248

Ettl, H., Gärtner, G. (2014): Syllabus of soil, air and lichens algae. 2., ergänzte Auflage. Springer, Berlin, Heidelberg, 773 p. (In German). doi: 10.1007/978-3-642-39462-1

Evdokimova, G. A., Mozgova, N. P. (2001): Microorganisms of tundra and forest podzols of the Kola North. KSC RAS Publ., Apatity, Russia, 184 p. (In Russian).

Galstyan, A. Sh. (1974): Enzymatic activity of soils in Armenia. Aiastan Publ., Yerevan, Armenia, 274 p. (In Russian).

Gaysina, L. A., Fazlutdinova, A. I. and Kabirov, R .R. (2008): Modern methods of isolation and cultivation of algae. Tutorial. Bashkir State Pedagogical University Publ., Ufa, Russia, 152 p. (In Russian).

Gill, A. S., Lee, A. and McGuire, K. L. (2017): Phylogenetic and functional diversity of          total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure  bioswale soils. Applied and Environmental Microbiology, 83(16): e00287-17. doi: 10.1128/ AEM.00287-17

Glushakova, A. M., Kachalkin, A. V. and Chernov, I. Y. (2011): Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil. Eurasian Soil Science, 44 (8): 886-892. doi: 10.1134/S1064229311080059

Guilland, C., Maron, P. A., Damas, O. and Ranjard, L. (2018): Biodiversity of urban soils for sustainable cities. Environmental Chemistry Letters, 16(4): 1267-1282. doi: 10.1007/s10311-018-0751-6

Gupta, S., Kumar, M., Kumar, J., Ahmad, V., Pandey, R. and Chauhan, N. S. (2017): Systemic analysis of soil microbiome deciphers anthropogenic influence on soil ecology and ecosystem functioning. International Journal of Environmental Science and Technology, 14(10): 2229-2238. doi: 10.1007/s13762-017-1301-7

Han, X., Wang, R., Guo, W., Pang, X., Zhou, J., Wang, Q., Zhan, J. and Dai, J. (2011): Soil microbial community response to land use and various soil elements in a city landscape of north China. African Journal of Biotechnology, 10(73): 16554-16565. doi: 10.5897/AJB10. 1682

Hoffmann, G., Pallauf, J. (1965): A colorimetric method to determine the sucrose activity of soils. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde [Journal of Plant Nutrition, Fertilization, Soil Science], 110(3): 193-201. (In German). doi: 10.1002/jpln. 19651100304

Hoult, J., Krieg, N., Snit, P., Staley, J. and Williams, S. (1997): Bergey’s guide to bacteria. Mir, Moscow, Russia, 432 p.

Hui, N., Jumpponen, A., Francini, G., Kotze, D.J., Liu, X., Romantschul, M., Srömmer, R. and Setal, H. (2017): Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental Microbiology, 19(3): 1281-1295. doi: 10.1111/1462-2920.13660

Huot, H., Joyner, J., Córdoba, A., Shaw, R. K., Wilson, M. A., Walker, R., Muth, T. R. and Cheng, Z. (2017): Characterizing urban soils in New York City: Profile properties and bacterial communities. Journal of Soils and Sediments, 17(2): 393-407. doi: 10.1007/s11368-016-1552-9

Ivanova, A. E., Nikolaeva, V. V. and Marfenina, O. E. (2015): Changes in the cellulolytic activity of urban soils induced by the removal of plant litter (using Moscow as an example). Eurasian Soil Science, 48(5): 501-508. doi: 10.1134/S1064229315030059

Ivashchenko, K., Ananyeva, N., Vasenev, V., Sushko, S., Seleznyova, A. and Kudeyarov, V. (2019): Microbial C-availability and organic matter decomposition in urban soils of megapolis depend on functional zoning. Soil & Environment, 38(1): 31-41. doi: 10.25252/ SE/19/61524

Kabirov, R. R. (1991): Soil algae of technogenic landscapes. Extended abstract of Doctor of Sciences (Biol) Dissertation, St. Petersburg, 35 p. (In Russian).

Kazimov, M. A., Ali, F. M. (2012): The hygienic importance of the research of enzymatic activity of soils from roadside territories. Sibirskiy meditsinskiy zhurnal [Siberian Medical Journal], 110(3): 118-122. (In Russian).

Khaybullina, L. S., Sukhanova, N. V. and Kabirov, R. R. (2011): Flora and Syntaxonomy      of Soil Algae and Cyanobacteria in Urbanized Areas. Gilem Publ., Ufa, Russia, 216 p. (In Russian).

Khaziyev, F. Kh. (1972): Soil enzymes. Znaniya Publ., Moscow, Russia, 257 p. (In Russian).

Khaziyev, F. Kh. (1976): Enzymatic activity of soils. Nauka Publ., Moscow, Russia, 179 p. (In Russian).

Klich, M.A. (2002): Identification of common Aspergillus species. CBS Fungal Biodiversity Centre, Utrecht, Netherlands, 116 p.

Korneikova, M. V. (2018): Comparative analysis of the number and structure of the complexes of microscopic fungi in tundra and taiga soils in the north of the Kola Peninsula. Eurasian Soil Science, 51(1): 89-95. doi: 10.1134/S1064229318010106

Korneikova, M. V., Redkina, V. V. and Shalygina, R. R. (2018): Algological and mycological characterization of soils under pine and birch forests in the Pasvik Reserve. Eurasian Soil Science, 51(2): 211-220. doi: 10.1134/S1064229318020047

Korneykova, M., Redkina, V. and Shalygina, R. (2017): Algae, cyanobacteria, and microscopic fungi complexes in the Rybachy Peninsula soils, Russia. Czech Polar Reports, 7(2): 181-194. doi: 10.5817/CPR2017-2-18

Kotai, J. (1972): Instructions for preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water research, Oslo, Norway, B-11/69, 5 p.

Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006): World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift [Meteorological journal],  15(3): 259-265. doi: 10.1127/0941-2948/2006/0130

Lysak, L.V. (2010): Bacterial communities of urban soils. Extended abstract of Doctor of Sciences (Biol) Dissertation, Moscow, 48 p. (In Russian).

Maltsev, Y. I., Pakhomov, A. Y. and Maltseva, I. A. (2017): Specific features of algal communities in forest litter of forest biogeocenoses of the steppe zone. Contemporary Problems of Ecology, 10: 71-76. doi: 10.1134/S1995425517010085

Marfenina, O. E., Danilogorskaya, A. A. (2017): Effect of elevated temperatures on composition and diversity of microfungal communities in natural and urban boreal soils, with emphasis on potentially pathogenic species. Pedobiologia, 60: 11-19. doi: 10.1016/j.pedobi. 2016.11.002

Marfenina, O. E., Kul'ko, A. B., Ivanova, A. E. and Sogonov, M. V. (2002): The microfungal communities in the urban outdoor environment. Mikologiya i Fitopatologiya [Mycology and phytopathology], 36(4): 22-32 (In Russian).

Marfenina, O. E., Lysak, L. V., Ivanova, A. E., Glushakova, A. M., Kachalkin, A. V., Nikolaeva, V. V., Karlsen, A. A. and Tepeeva, A. N. (2017): Biodiversity in urban soils: threats and opportunities (on the example of cultivated microorganisms). In: Abstract book of 9th international congress Soils of Urban Industrial Traffic Mining and Military Areas. “Urbanization: A challenge and an opportunity for soil functions and ecosystem services”, 22-26 May 2017, Moscow, Russia, pp. 337–339

Mineyev, V. G., Sychev, V. G., Amelyanchik, O. A., Bolysheva, T. N., Gomonova, N. F., Durynina, Ye. P., Yegorov, B. C., Yegorova, Ye. V., Yedemskaya, N. L., Karpova, Ye. A. and Prizhukova, V. G. (2001): Practical manual on agrochemistry. Moscow State University Publ., Moscow, Russia, 689 p. (In Russian).

Mishustin, Ye. N., Shilnikova, V. K. (1968): Biotic fixation of atmospheric nitrogen. Nauka Publ., Moscow, Russia, 531 p. (In Russian).

Morel, J. L., Chenu, C. and Lorenz, K. (2015): Ecosystems services provided by soil of urban, industrial, traffic, mining, and military areas (SUITMAs). Journal of Soils and Sediments, 15: 1659-1666. doi: 10.1007/s11368-014-0926-0

Naylo, A., Pereira, S. I. A., Benidire, L., Khalil, H. E., Castro, P. M. L., Ouvrard, S., Schwartz, C. and Boularbah, A. (2019): Trace and major element contents, microbial communities, and enzymatic activities of urban soils of Marrakech city along an anthropization gradient. Journal of Soils and Sediments, 19(5): 2153-2165. doi: 10.1007/s11368-018-2221-y

Nosanchuk, J. D., Stark, R.E. and Casadevall, A. (2015): Fungal melanin: what do we know about structure? Frontiers in Microbiology, 6: 1463. doi: 10.3389/fmicb.2015.01463

Odum, Yu. (1986): Ecology. In 2 vols. Mir Publ., Moscow, Russia, Vol. 1. 328 p., Vol. 2. 376 p. (In Russian).

Peretrukhina, A. T. (2011): Sanitary and microbiological studies of soils in Murmansk city     and the Murmansk region. Mezhdunarodnyy zhurnal eksperimentalnogo obrazovaniya [International Journal of Experimental Education], 6: 14-16. (In Russian).

Polyanskaya, L. M., Zvyagintsev, D. G. (2005): The content and composition of microbial biomass as an index of the ecological status of soil. Eurasian Soil Science, 38(6): 625-633.

Redkina, V. V., Korneykova, M. V. and Shalygina, R. R. (2020): Microorganisms of the Technogenic Landscapes: The Case of Nepheline-Containing Sands, the Murmansk Region. In: O. Frank-Kamenetskaya, D. Vlasov, E. Panova, S. Lessovaia (eds.): Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Lecture Notes in Earth System Sciences. Springer, Cham, pp. 561–579. doi: 10.1007/978-3-030-21614-6_30

Reese, A. T., Savage. A., Youngsteadt, E., McGuire, K. L., Koling, A., Watkins, O., Frank, S. D. and Dunn, R. R. (2016): Urban stress is associated with variation in microbial species composition-but not richness-in Manhattan. Multidisciplinary Journal of Microbial Ecology,  10(3): 751-760. doi: 10.1038/ismej.2015.152

Rozanova, M. S., Prokof'eva, T. V., Lysak, L. V. and Rakhleeva, A. A. (2016): Soil organic matter in the Moscow State University botanical garden on the Vorob'evy Hills. Eurasian Soil Science, 49(9): 1013-1025. doi: 10.1134/S106422931609012X

Schindelbeck, R. R., van Es, H. M., Abawi, G. S., Wolfe, D. W., Whitlow, T. L., Gugino,         B. K., Idowu, O. J. and Moebius-Clune, B. N. (2008): Comprehensive assessment of soil quality for landscape and urban management. Landscape and Urban Planning, 88(2-4): 73-80. doi: 10.1016/j.landurbplan.2008.08.006

Schmidt, D. J. E. (2016): The ecology of urbanization: A study of soil microbial community response. Doctor of Sciences (Biol) Dissertation, University of Maryland, College Park, Maryland, 215 p. doi: 10.13016/M26V4N

Seifert, K., Morgan-Jones, G., Gams, W. and Kendrick, B. (2011): The genera of Hyphomycetes. Utrecht: CBS, Reus, Spain, 997 p.

Seifert, K.A., Gams, W. (2011): The genera of Hyphomycetes–2011 update. Persoonia: Molecular Phylogeny and Evolution of Fungi, 27: 119-129. doi: 10.3767/003158511X617435

Sharipova, M. Yu., Dubovik, I. Ye. (2004): Complex studing of algaflora of Ufa. Vestnik Bashkirskogo universiteta [Bulletin of the Bashkir University], 9(4): 45-50. (In Russian).

Sharkova, S. Yu., Parfenova, Ye. A. and Polyanskova, Ye. A. (2011): Bioindication of the urban environment by the state of the microbial complex of soils. Ekologiya i promyshlennost Rossii [Ecology and industry of Russia], 11: 44-47. (In Russian).

Shea, K., Roxburgh, S. H. and Rauschert, E. S. J. (2004): Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters, 7(6): 491-508. doi: 10.1111/j.1461-0248.2004.00600.x

Sherman, C., Unc, A., Doniger, T., Ehrlich, R. and Steinberger, Y. (2019): The effect of human trampling activity on a soil microbial community at the Oulanka Natural Reserve, Finland. Applied Soil Ecology, 135(14): 104-112. doi: 10.1016/j.apsoil.2018.11.013

Shtina, E. A. (1990): Soil algae as ecological indicators. Botanicheskiy zhurnal [Botanical journal], 75(1): 441-452. (In Russian).

Shtina, E. A. Gollerbakh, M. M. (1976): Ecology of soil algae. Nauka Publ., Moscow, Russia, 143 p. (In Russian).

Shumilova, L. P., Kuimova, N. G. (2013): The study of microbial association in city soils by the gas chromatography-mass spectrometry method. Byulleten fiziologii i patologii dykhaniya [Respiratory Physiology and Pathology Bulletin], 50: 121-125. (In Russian).

Škaloud, P., Rindi, F., Boedeker, C. and Leliaert, F. (2018): Freshwater Flora of Central Europe. Chlorophyta: Ulvophyceae (Süßwasserflora von Mitteleuropa, Bd. 13: Chlorophyta: Ulvophyceae). Springer-Verlag, 289 p. doi: 10.1007/978-3-662-55495-1

Steffan, J. J., Brevik, E. C., Burgess, L. C. and Cerdà, A. (2018): The effect of soil on human health: an overview. European Journal of Soil Science, 69 (1): 159-171. doi: 10.1111/ejss.12451

Stepanov, A. L., Manucharova, N. A., Smagin, A. V., Kurbatova, A. S., Myagkova, A. D., and Bashkin, V. N. (2005): Characterization of the biological activity of the microbial complex in urban soils. Eurasian Soil Science, 38(8): 864-869.

Trifonova, T. A., Zabelina, O. N. (2017): Changes in the biological activity of heavy metal- and oil-polluted soils in urban recreation territories. Eurasian Soil Science, 50(4): 483-490. doi: 10.1134/S1064229317040147

Trukhnitskaya, S. M., Chizhevskaya, M. V. (2008): Algoflora in the recreation areas of the Krasnoyarsk urboecosystem. Krasnoyarsk State Agrarian University Publ., Krasnoyarsk, Russia, 139 p. (In Russian).

Trzciñski, P., Sas-Paszt, L. M., G³uszek, S., Przyby³, M. and Derkowska, E. (2018): Effect of organic cultivation on the occurrence of beneficial groups of microorganisms in the rhizosphere soil of vegetable crops. Journal of Horticultural Research, 26(2): 15-24. doi: 10.2478/johr-2018-0012

Turchanovskaya, N. S., Bogdanova, O. Yu. (2011): Microbiological study of the soil of Murmansk city. Uspekhi sovremennogo yestestvoznaniya [The Successes of Modern Natural Science], 8: 72. (In Russian).

Vasenev, V., Kuzyakov, Y. (2018): Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degradation & Development, 29(6): 1607-1622. doi: 10.1002/ldr.2944

Vermeire, M. L., Bonneville, S., Stenuit, B., Delvaux, B. and Cornélis, J. T. (2019):              Is microbial reduction of Fe (III) in podzolic soils influencing C release? Geoderma, 340(1):   1-10. doi: 10.1016/j.geoderma.2018.12.045

Wang, H., Marshall, C. W., Cheng, M., Xu, H., Li, H., Yang, X. and Zheng, T. (2017): Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Scientific Reports, 7: 44049. doi: 10.1038/srep44049

Wille, L., Messmer, M. M., Studer, B. and Hohmann, P. (2019): Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant, Cell & Environment, 42(1): 20-40. doi: 10.1111/pce.13214

Yan, B., Li, J., Xiao, N., Qi, Y., Fu, G., Liu, G. and Qiao, M. (2016): Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Scientific Reports, 6: 38811. doi: 10.1038/srep38811

Ye, G., Lin, Y., Luo, J., Di, H. J., Lindsey, S., Liu, D., Fan, J. and Ding, W. (2020): Responses of soil fungal diversity and community composition to long-term fertilization: Field experiment in an acidic Ultisol and literature synthesis. Applied Soil Ecology, 145: 103305. doi: 10.1016/ j.apsoil.2019.06.008

Zabelina, O. N. (2014): Enzymatic activity of recreational landscapes soil in urban areas. Sovremennyye problemy nauki i obrazovaniya [Modern Problems of Science and Education],  2: 493-501. (In Russian).

Zaydelman, F. R. (2016): The role of gley formation in soil formation and degradation. Vestnik Rossiyskoy akademii nauk [Bulletin of the Russian Academy of Sciences], 86(4): 342-342. (In Russian). doi: 10.7868/S086958731604023X  

Zvyagintsev, D. G. (1991): Methods of soil microbiology and biochemistry. Moscow State University Publ., Moscow, Russia, 304 p. (In Russian).

 

 

Web sources / Other sources

 

[1] Weather online.
https://www.weatheronline.co.uk/ (Accessed 20.12.2020).

 

[2] Climatic data of cities worldwide (2020).

      https://ru.climate-data.org/ (Accessed 20.12.2020).

 

[3] IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, No. 106. FAO, Rome, Italy, 203 p. 

 

[4] Index Fungorum (2021): A nomenclatural database. CABI Bioscience Databases. http://www.indexfungorum.org. (Accessed 09.02.2021).

 

[5] Guiry, M. D., Guiry, G. M. (2021): AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org. (Accessed 15.01.2021). 

Notes: