Title:

An exploratory study of short-term camping in Antarctica: Hormonal and mood states changes

Authors Name:   

Ygor Antōnio Tinoco Martins, Michele Macedo Moraes, Thiago Teixeira Mendes, Chams Bicalho Maluf, Roberto Vagner Puglia Ladeira, Samuel Penna Wanner, Danusa Dias Soares, Rosa Maria Esteves Arantes

Journal: Czech Polar Reports
Issue: 11
Volume: 2
Page Range: 352-373
No. of Pages: 22
Year: 2021
DOI:

10.5817/CPR2021-2-24

Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English
Subject:  
Abstract:

Long-term Antarctic expedition’s studies indicated harmful or positive behavioral and psychophysiological adaptive changes that arise from adversities in isolated, confined, and extreme environments. Whereas most of the published studies focused on over-wintering situations, most Brazilian Antarctic Program summer expeditions consist of short-term stays. We evaluated the influence of a permanence in Antarctic short-term (13-day) summer camp on the hormonal responses and mood states in eight volunteers. Data collection was carried out at the beginning (initial measure, days 3 to 5) and the end (final measurement, days 10 to 12) of the camping. Morning and evening samples of saliva were obtained to measure the testosterone and cortisol concentrations. Morning blood drops were used to determine thyroid-stimulating hormone (TSH) and thyroxine (T4) concentration. The volunteers also answered a mood states questionnaire. During the short-term camp, T4 (3.92 ± 0.75 vs 2.21 ± 0.71 µg.dL-1) and T4/TSH (3.16 ± 0.97 vs 1.79 ± 0.74 AU) reduced, without concomitant changes in TSH (1.28 ± 0.17 vs 1.30 ± 0.09 µU.mL-1), and salivary cortisol increased (2,392 ± 1,153 vs 4,440 ± 1,941 pg.mL-1) resulting in greater cortisol amplitude (calculated from the difference between morning and evening measurement, 1,400 ± 1,442 vs 3,230 ± 2,046). In men, testosterone increased as well (26.2 ± 12.5 vs 67.8 ± 45.8, all differences with P<0.05). There was a moderate effect in mood states evidenced by increased anger and fatigue, and reduced vigor. At the end of the camp, the change in cortisol correlated with anger, and the final cortisol values with anger and tension. We concluded that staying in a short-term summer camp in Antarctica induced endocrine and mood state changes, indicators of stress reaction.

 

Keywords: confinement, isolation, expedition, neuroendocrine, polar, stress
 

References:

Anton-Solanas, A., O'Neill, B. V., Morris, T. E. and Dunbar, J. (2016): Physiological and cognitive responses to an Antarctic expedition: A case report. International Journal of Sports Physiology and Performance, 11(8): 1053-1059.

Atterwill, C. K. (1981): Effect of acute and chronic tri-iodothyronine (T3) administration to rats on central 5-HT and dopamine-mediated behavioural responses and related brain biochemistry. Neuropharmacology, 20(2): 131-144.

Bartone, P. T., Krueger, G. P. and Bartone, J. V. (2018): Individual differences in adaptability to isolated, confined, and extreme environments. Aerospace Medicine and Human Performance, 89(6): 536-546.

Bauer, M., Whybrow, P. C. (2001): Thyroid hormone, neural tissue and mood modulation. The world journal of biological psychiatry. The official journal of the World Federation of Societies of Biological Psychiatry, 2(2): 59-69.

Bauer, M., Goetz, T., Glenn, T. and Whybrow, P. C. (2008): The thyroid-brain interaction in thyroid disorders and mood disorders. Journal of Neuroendocrinology, 20(10): 1101-1114.

Bauer, M., Heinz, A. and Whybrow, P. C. (2002): Thyroid hormones, serotonin and mood: Of synergy and significance in the adult brain. Molecular Psychiatry, 7(2): 140-156.

Belanoff, J. K., Gross, K., Yager, A. and Schatzberg, A. F. (2001): Corticosteroids and cognition. Journal of Psychiatric Research, 35(3): 127-145.

Bianco, A. C., Nunes, M. T., Hell, N. S. and Maciel, R. M. (1987): The role of glucocorticoids  in the stress-induced reduction of extrathyroidal 3,5,3'-triiodothyronine generation in rats. Endocrinology, 120(3): 1033-1038.

Blanco, S., Domķnguez, J., Jiménez, O., Sįnchez, D., Galķ, N., Matas, L., Ausina, V. and Galimany, R. (2003): Evaluation of the automatic ELISA Triturus analyser. Journal of Automated Methods & Management in Chemistry, 25(2): 31-34.

Brillon, D. J., Zheng, B., Campbell, R. G. and Matthews, D. E. (1995): Effect of cortisol on energy expenditure and amino acid metabolism in humans. The American Journal of Physiology, 268(3 Pt 1): E501-E513.

Brown, E. S. (2009): Effects of glucocorticoids on mood, memory, and the hippocampus. Annals of the New York Academy of Sciences, 1179(1): 41-55.

Carrozza, C., Corsello, S. M., Paragliola, R. M., Ingraudo, F., Palumbo, S., Locantore, P., Sferrazza, A., Pontecorvi, A. and Zuppi, C. (2010): Clinical accuracy of midnight salivary cortisol measured by automated electrochemiluminescence immunoassay method in Cushing's syndrome. Annals of Clinical Biochemistry, 47(Pt 3): 228-232.

Chrousos, G. P., Gold, P. W. (1992): The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 267(9): 1244-1252.

Crewther, B. T., Kilduff, L. P. and Cook, C. J. (2014): Trained and untrained males show reliable salivary testosterone responses to a physical stimulus, but not a psychological stimulus. Journal of Endocrinological Investigation, 37(11): 1065-1072.

Cumming, D. C., Quigley, M. E. and Yen, S. S. (1983): Acute suppression of circulating testosterone levels by cortisol in men. The Journal of Clinical Endocrinology and Metabolism, 57(3): 671-673.

Dickerson, S. S., Kemeny, M. E. (2004): Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3): 355-391.

Do, N. V., LeMar, H. and Reed, H. L. (1996): Thyroid hormone responses to environmental cold exposure and seasonal change: A proposed model. Endocrinology and Metabolism, 3: 7-16.

Durdiakovį, J., Fįbryovį, H., Koborovį, I., Ostatnķkovį, D. and Celec, P. (2013): The effects of saliva collection, handling and storage on salivary testosterone measurement. Steroids, 78(14): 1325-1331.

Farrace, S., Cenni, P., Tuozzi, G., Casagrande, M., Barbarito, B. and Peri, A. (1999): Endocrine and psychophysiological aspects of human adaptation to the extreme. Physiology & Behavior, 66(4): 613-620.

Garde, A. H., Hansen, A. M. (2005): Long-term stability of salivary cortisol. Scandinavian Journal of Clinical and Laboratory Investigation, 65(5): 433-436.

Gagnon, D. D., Pullinen, T., Karinen, H., Rintamäki, H. and Kyröläinen, H. (2011): Recovery of hormonal, blood lipid, and hematological profiles from a North Pole expedition. Aviation, Space, and Environmental Medicine, 82(12): 1110-1117.

Gavhed, D., Mäkinen, T., Holmér, I. and Rintamäki, H. (2000): Face temperature and cardiorespiratory responses to wind in thermoneutral and cool subjects exposed to -10 degrees C. European Journal of Applied Physiology, 83(4-5): 449-456.

Ghasemi, A., Zahediasl, S. (2021): Normality tests for statistical analysis: A guide for non-statisticians. International Journal of Endocrinology & Metabolism, 10(2): 486-489.

Hargreaves K. M. (1990): Neuroendocrine markers of stress. Anesthesia Progress, 37(2-3): 99-105.

Harinath, K., Malhotra, A. S., Pal, K., Prasad, R., Kumar, R. and Sawhney, R. C. (2005): Autonomic nervous system and adrenal response to cold in man at Antarctica. Wilderness & Environmental Medicine, 16(2): 81-91.

Hassi, J., Sikkilä, K., Ruokonen, A. and Leppäluoto, J. (2001): The pituitary-thyroid axis in healthy men living under subarctic climatological conditions. The Journal of Endocrinology, 169(1): 195-203.

Helmreich, D. L., Parfitt, D. B., Lu, X. Y., Akil, H. and Watson, S. J. (2005): Relation between the hypothalamic-pituitary-thyroid (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis during repeated stress. Neuroendocrinology, 81(3): 183-192.

Hidal, J. T., Kaplan, M. M. (1988): Inhibition of thyroxine 5'-deiodination type II in cultured human placental cells by cortisol, insulin, 3', 5'-cyclic adenosine monophosphate, and butyrate. Metabolism: Clinical and Experimental, 37(7): 664-668.

Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A. and Hackney, A. C. (2008): Exercise and circulating cortisol levels: the intensity threshold effect. Journal of Endocrinological Investigation, 31(7): 587-591. 

Iwen, K. A., Backhaus, J., Cassens, M., Waltl, M., Hedesan, O. C., Merkel, M., Heeren, J., Sina, C., Rademacher, L., Windjäger, A., Haug, A. R., Kiefer, F. W., Lehnert, H. and Schmid, S. M. (2017): Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. The Journal of Clinical Endocrinology and Metabolism, 102(11): 4226-4234.

Izawa, S., Kim, K., Akimoto, T., Ahn, N., Lee, H. and Suzuki, K. (2009): Effects of cold environment exposure and cold acclimatization on exercise-induced salivary cortisol response. Wilderness & Environmental Medicine, 20(3): 239-243.

Jackson, A. S., Pollock, M. L. (1978): Generalized equations for predicting body density of men. The British Journal of Nutrition, 40(3): 497-504.

Kakucska, I., Qi, Y. and Lechan, R. M. (1995): Changes in adrenal status affect hypothalamic thyrotropin-releasing hormone gene expression in parallel with corticotropin-releasing hormone. Endocrinology, 136(7): 2795-2802.

Kanikowska, D., Roszak, M., Rutkowski, R., Sato, M., Sikorska, D., Orzechowska, Z., Brźborowicz, A. and Witowski, J. (2019): Seasonal differences in rhythmicity of salivary cortisol in healthy adults. Journal of Applied Physiology, 126(3): 764-770.

Köhrle J. (2000): Thyroid hormone metabolism and action in the brain and pituitary. Acta Medica Austriaca, 27(1): 1-7.

Kovaničovį, Z., Kurdiovį, T., Balįž, M., Štefanička, P., Varga, L., Kulterer, O. C., Betz, M. J., Haug, A. R., Burger, I. A., Kiefer, F. W., Wolfrum, C., Ukropcovį, B. and Ukropec, J. (2020): Cold exposure distinctively modulates parathyroid and thyroid hormones in cold-acclimatized and non-acclimatized humans. Endocrinology, 161(7): bqaa051.

Kraemer, W. J. (1988): Endocrine responses to resistance exercise. Medicine and Science in Sports and Exercise, 20(5 Suppl): S152-S157.

Kritz-Silverstein, D., Schultz, S. T., Palinska, L. A., Wingard, D. L. and Barrett-Connor, E. (2009): The association of thyroid stimulating hormone levels with cognitive function and depressed mood: The Rancho Bernardo study. The Journal of Nutrition, Health & Aging, 13(4): 317-321.

Kulikov, A., Moreau, X. and Jeanningros, R. (1999): Effects of experimental hypothyroidism on 5-HT1A, 5-HT2A receptors, 5-HT uptake sites and tryptophan hydroxylase activity in mature rat brain1. Neuroendocrinology, 69(6): 453-459.

Larsen, J. K., Faber, J., Christensen, E. M., Bendsen, B. B., Solstad, K., Gjerris, A. and Siersbaek-Nielsen, K. (2004): Relationship between mood and TSH response to TRH stimulation in bipolar affective disorder. Psychoneuroendocrinology, 29(7): 917-924.

LeBlanc, J., Blais, B., Barabé, B. and Cōté, J. (1976): Effects of temperature and wind on facial temperature, heart rate, and sensation. Journal of Applied Physiology, 40(2): 127-131.

Leppäluoto, J., Korhonen, I., Huttunen, P. and Hassi, J. (1988): Serum levels of thyroid and adrenal hormones, testosterone, TSH, LH, GH and prolactin in men after a 2-h stay in a cold room. Acta Physiologica Scandinavica, 132(4): 543-548.

Leproult, R., Colecchia, E. F., L'Hermite-Balériaux, M. and Van Cauter, E. (2001): Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. The Journal of Clinical Endocrinology and Metabolism, 86(1): 151-157.

Magalhães, P., Miranda, C. H., Vilar, F. C., Schmidt, A., Bittar, R. R., Paixão, G., Martinez, E. Z. and Maciel, L. (2018): Effects of drying and storage conditions on the stability of TSH in blood spots. Archives of Endocrinology and Metabolism, 62(2): 201-204.

Manousou, S., Andersson, M., Eggertsen, R., Hunziker, S., Hulthén, L. and Nyström, H. F. (2020): Iodine deficiency in pregnant women in Sweden: A national cross-sectional study. European Journal of Nutrition, 59(6): 2535-2545.

Martķ, O., Gavaldà, A., Jolķn, T. and Armario, A. (1996): Acute stress attenuates but does not abolish circadian rhythmicity of serum thyrotrophin and growth hormone in the rat. European Journal of Endocrinology, 135(6): 703-708.

Moraes, M. M., Bruzzi, R. S., Martins, Y., Mendes, T. T., Maluf, C. B., Ladeira, R., Nśñez-Espinosa, C., Soares, D. D., Wanner, S. P. and Arantes, R. (2020): Hormonal, autonomic cardiac and mood states changes during an Antarctic expedition: From ship travel to camping in Snow Island. Physiology & Behavior, 224: 113069.

Moraes, M. M., Mendes, T. T., Martins, Y., Espinosa, C. N., Maluf, C. B., Soares, D. D., Wanner, S. P. and Arantes, R. (2018): The changes in maximal oxygen uptake (V̊O2MAX) induced by physical exertion during an Antarctic expedition depend on the initial V̊O2MAX of the individuals: a case study of the Brazilian expedition. International Journal of Circumpolar Health, 77(1): 1521244.

Mullur, R., Liu, Y. Y. and Brent, G. A. (2014): Thyroid hormone regulation of metabolism. Physiological Reviews, 94(2): 355-382.

Musson, D. M., Sandal, G. M., Harper, M. L. and Helmreich, R. L. (2002): Personality testing in Antarctic expeditioners: Cross cultural comparisons and evidence for generalizability. IAF abstracts, 34th COSPAR Scientific Assembly.

O'Brien, C., Castellani, J. W. and Sawka, M. N. (2011): Thermal face protection delays finger cooling and improves thermal comfort during cold air exposure. European Journal of Applied Physiology, 111(12): 3097-3105.

Pääkkönen, T., Leppäluoto, J. (2002): Cold exposure and hormonal secretion: A review. International Journal of Circumpolar Health, 61(3): 265-276.

Palinkas, L. A., Johnson, J. C., Boster, J. S., Rakusa-Suszczewski, S., Klopov, V. P., Fu, X. Q. and Sachdeva, U. (2004): Cross-cultural differences in psychosocial adaptation to isolated and confined environments. Aviation, Space, and Environmental Medicine, 75(11): 973-980.

Palinkas, L. A., Keeton, K. E., Shea, C. and Leveton, L. B. (2011): Psychosocial characteristics of optimum performance in isolated and confined environments. NASA Report TM-2011-216149. Hanover, MD: NASA.

Palinkas, L. A., Suedfeld, P. (2008): Psychological effects of polar expeditions. Lancet (London, England), 371(9607): 153-163.

Palinkas, L. A., Reed, H. L., Reedy, K. R., Do, N. V., Case, H. S. and Finney, N. S. (2001): Circannual pattern of hypothalamic-pituitary-thyroid (HPT) function and mood during extended Antarctic residence. Psychoneuroendocrinology, 26(4): 421-431.

Palinkas, L. A., Reedy, K. R., Shepanek, M., Smith, M., Anghel, M., Steel, G. D., Reeves, D., Case, H. S., Do, N. V. and Reed, H. L. (2007): Environmental influences on hypothalamic-pituitary-thyroid function and behavior in Antarctica. Physiology & Behavior, 92(5): 790-799.

Pattyn, N., Mairesse, O., Cortoos, A., Marcoen, N., Neyt, X. and Meeusen, R. (2017): Sleep during an Antarctic summer expedition: New light on "polar insomnia". Journal of Applied Physiology (Bethesda, Md.: 1985): 122(4): 788-794.

Re, R. N., Kourides, I. A., Ridgway, E. C., Weintraub, B. D. and Maloof, F. (1976): The effect of glucocorticoid administration on human pituitary secretion of thyrotropin and prolactin. The Journal of Clinical Endocrinology and Metabolism, 43(2): 338-346.

Reed, H. L., Reedy, K. R., Palinkas, L. A., Van Do, N., Finney, N. S., Case, H. S., LeMar, H. J., Wright, J. and Thomas, J. (2001): Impairment in cognitive and exercise performance during prolonged Antarctic residence: Effect of thyroxine supplementation in the polar triiodothyronine syndrome. The Journal of Clinical Endocrinology and Metabolism, 86(1): 110-116.

Reed, H. L., Silverman, E. D., Shakir, K. M., Dons, R., Burman, K. D. and O'Brian, J. T. (1990): Changes in serum triiodothyronine (T3) kinetics after prolonged Antarctic residence: The polar T3 syndrome. The Journal of Clinical Endocrinology and Metabolism, 70(4): 965-974.

Russell, G., Lightman, S. (2019): The human stress response. Nature Reviews. Endocrinology, 15(9): 525-534.

Sandal, G. M., Leon, G. R. and Palinkas, L. (2006): Human challenges in polar and space environments. Reviews in Environmental Science and Bio/Technology, 5: 281-296.

Scheer, F. A., Buijs, R. M. (1999): Light affects morning salivary cortisol in humans. The Journal of Clinical Endocrinology and Metabolism, 84(9): 3395-3398.

Schwabe, L., Haddad, L. and Schachinger, H. (2008): HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology, 33(6): 890-895.

Silva, J. E. (2001): The multiple contributions of thyroid hormone to heat production. The Journal of Clinical Investigation, 108(1): 35-37.

Silva, J. E. (1995): Thyroid hormone control of thermogenesis and energy balance. Thyroid: official journal of the American Thyroid Association, 5(6): 481-492.

Simmons, P. S., Miles, J. M., Gerich, J. E. and Haymond, M. W. (1984): Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. The Journal of Clinical Investigation, 73(2): 412-420.

Steinach, M., Kohlberg, E., Maggioni, M. A., Mendt, S., Opatz, O., Stahn, A. and Gunga, H. C. (2016): Sleep quality changes during overwintering at the german Antarctic stations Neumayer II and III: The Gender Factor. PloS One, 11(2): e0150099.

Strewe, C., Moser, D., Buchheim, J. I., Gunga, H. C., Stahn, A., Crucian, B. E., Fiedel, B., Bauer, H., Gössmann-Lang, P., Thieme, D., Kohlberg, E., Choukèr, A. and Feuerecker, M. (2019): Sex differences in stress and immune responses during confinement in Antarctica. Biology of Sex Differences, 10(1): 20.

Sullivan, G. M., Feinn, R. (2012): Using effect size-or why the P value is not enough. Journal of Graduate Medical Education, 4(3): 279-282.

Terry, P. C., Lane, A. M. and Fogarty, G. J. (2003): Construct validity of the POMS-A for use with adults. Psychology of Sport and Exercise, 4: 125-139.

Terry, P. C., Lane, A. M., Lane, H. J. and Keohane, L. (1999): Development and validation of a mood measure for adolescents. Journal of Sports Sciences, 17(11): 861-872.

Tipton, M. (2012): A case for combined environmental stressor studies. Extreme Physiology & Medicine, 1(1): 7.

Toyoda, N., Yasuzawa-Amano, S., Nomura, E., Yamauchi, A., Nishimura, K., Ukita, C., Morimoto, S., Kosaki, A., Iwasaka, T., Harney, J. W., Larsen, P. R. and Nishikawa, M. (2009): Thyroid hormone activation in vascular smooth muscle cells is negatively regulated by glucocorticoid. Thyroid official journal of the American Thyroid Association, 19(7): 755-763. 

Tsibulnikov, S., Maslov, L., Voronkov, N. and Oeltgen, P. (2020): Thyroid hormones and the mechanisms of adaptation to cold. Hormones (Athens, Greece), 19(3): 329-339.

Van der Spoel, E., Roelfsema, F. and van Heemst, D. (2021): Within-Person variation in serum thyrotropin concentrations: Main sources, potential underlying biological mechanisms, and clinical implications. Frontiers in Endocrinology, 12: 619568.

Vingren, J. L., Kraemer, W. J., Ratamess, N. A., Anderson, J. M., Volek, J. S. and Maresh,   C. M. (2010): Testosterone physiology in resistance exercise and training: The up-stream regulatory elements. Sports Medicine, 40(12): 1037-1053.

Vitale, J. A., Lombardi, G., Weydahl, A. and Banfi, G. (2018): Biological rhythms, chronodisruption and chrono-enhancement: The role of physical activity as synchronizer in correcting steroids circadian rhythm in metabolic dysfunctions and cancer. Chronobiology International, 35(9): 1185-1197.

Wirth, M. M., Scherer, S. M., Hoks, R. M. and Abercrombie, H. C. (2011). The effect of cortisol on emotional responses depends on order of cortisol and placebo administration in a within-subject design. Psychoneuroendocrinology, 36(7): 945-954.

Woods, D. R., Delves, S. K., Britland, S. E., Shaw, A., Brown, P. E., Bentley, C., Hornby, S., Burnett, A., Lanham-New, S. A. and Fallowfield, J. L. (2015): Nutritional status and the gonadotrophic response to a polar expedition. Applied Physiology, Nutrition, and Metabolism, 40(3): 292-297.

Wright, K. P., Jr, Drake, A. L., Frey, D. J., Fleshner, M., Desouza, C. A., Gronfier, C. and Czeisler, C. A. (2015): Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain, Behavior, and Immunity, 47: 24-34.

Xu, C., Zhu, G., Xue, Q., Zhang, S., Du, G., Xi, Y. and Palinkas, L. A. (2003): Effect of the Antarctic environment on hormone levels and mood of Chinese expeditioners. International Journal of Circumpolar Health, 62(3): 255-267.

Zimmer, M., Cabral, J. C. C. R., Borges, F. C., Cōco, K. G. and Hameister, B. R. (2013): Psychological changes arising from an Antarctic stay: Systematic overview. Estudos de Psicologia (Campinas), 30(3): 415-423.

 

 

Web sources / Other sources

 

[1] Zone-related website Time and Date. (2017) Livingston Island, Antarctica

      Sunrise, Sunset, and Daylength, January 2017 [Online].

      https://www.timeanddate.com/sun/@6620723?month=1&year=2017

      (Accessed: 10 October 2020).

 

[2] B032-312 AutoDELFIA Neonatal hTSH 2016. Instructions for use. PerkinElmer:  

      2016, Wallac Oy, Turku, Finland.

 

[3] B065-112 AutoDELFIA Neonatal Thyroxine (T4) 2016. Instructions for use.

      PerkinElmer: 2016, Wallac Oy, Turku, Finland.

Notes: