Antimicrobial activity of microfungi from maritime Antarctic soil

Authors Name:   

Mohammed A. Abneuf, Abiramy Krishnan, Marcelo Gonzalez Aravena, Ka-Lai Pang, Peter Convey, Nuradilla Mohamad-Fauzi, Mohammed Rizman-Idid, Siti Aisyah Alias

Journal: Czech Polar Reports
Issue: 6
Volume: 2
Page Range: 141-154
No. of Pages: 14
Year: 2016


Publishers: muniPress Masaryk University Brno
ISSN:    1805-0689 (Print), 1805-0697 (On-line)
Language: English

The search for cold-adapted and cold-active fungi in extreme environments provides the potential for discovering new species and novel bioactive compounds. In this study, soil samples were collected from Deception Island, Wilhelmina Bay (north-west Antarctic Peninsula, Graham Land) and Yankee Bay (Greenwich Island), maritime Antarctica, for the isolation of soil fungi and determination of their antimicrobial activity. The soil-plate method, agar block, disc diffusion and broth micro-dilution assays were applied to characterize the thermal classes and antimicrobial activity of the isolated fungi. A total of 27 isolates of fungi were obtained from 14 soil samples, including 13 Ascomycota, 4 Zygomycota and 10 anamorphic fungi. Cold-active (psychrotolerant) fungi predominated over cold-adapted (psychrophilic) fungi. In the antimicrobial assay, 16 isolates showed substantial inhibitory activity against test bacterial pathogens. Ethyl acetate extracts of 10 competent isolates showed significant inhibition of bacterial pathogens. Antifungal activity was observed in the disc diffusion assay, but not in the agar block assay. Minimum inhibitory, bactericidal and fungicidal concentrations were determined using the broth micro-dilution method, with an average in the range of 0.78-25 mg ml-1 on the test microorganisms. Isolate WHB-sp. 7 showed the best broad spectrum antimicrobial activity, with the potential for biotechnological studies in antibiotic development.


Keywords: biodiversity, soil fungi, isolation, antibacterial, antifungal


Andrews M. J. (2001): Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48: 5-16.

Azmi, O. R., Seppelt, R. D. (1998): The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biology, 19: 92-100.

Barnett, H. L., Hunter, B. B. (1972): Illustrated genera of imperfect fungi. Burgess, Minneapolis, Minnesota, pp. 241.

Bauer, A. W., Kirby, W. M. M., Sherris, J. C. and Turck, M. (1966): Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45: 493-496.

Bradner, J. R., Gillings, M. and Nevalainen, K. H. (1999): Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media. World Journal of Microbiology and Biotechnology, 15: 131-132.

Brett, A., Benjamin, H., Joel, J., Roberta, F. and Robert, B. (2006): Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology and Biochemistry, 38: 3057-3064.

Bridge, P. D., Hughes, K. A. (2010): Conservation issues for Antarctic fungi. Mycologia Balcanica, 7: 73-76.

Bridge, P. D., Spooner, B. M. and Roberts, P. J. (2008): Non-lichenized fungi from the Antarctic region. Mycotaxon, 106: 485-490.

Brunati, M., Rojas, J. L., Sponga, F., Ciciliato, I., Losi, D., Göttlich, E., de Hoog, S., Genilloud, O. and Marinelli, F. (2009): Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Marine Genomics, 2: 43-50.

Cabello, M., Platas, G., Collado, J., Diez, M., Martin, I., Vicente, F., Meinz, M., Onishi, J., Douglas, C., Thompson, J., Kurtz, M., Schwartz, R., Bills, G., Giacobbe, R., Abruzzo, G., Flattery, A., Kong L. and Pela’ez, F. (2001): Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms. International Microbiology, 4: 93-102.

Chong, C.W., Goh, Y. S., Convey, P., Pearce, D. A. and Tan, I. K. P. (2013): Bacterial biogeography: what can we learn from Antarctic bacterial isolates? Extremophiles, 17: 733-745.

Chong, C.W., Pearce, D. A. and Convey, P. (2015): Emerging spatial patterns in Antarctic prokaryotes. Frontiers in Microbiology, 6: 1058.

Chown, S. L., Convey, P. (2007): Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society B: Biological Sciences, 362: 2307-2331.

Cowan, D. A., Sohm, J. A., Makhalanyane, T. P., Capone, D. G., Green, T. G. A., Cary, S. C. and Tuffin, I. M. (2011): Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3: 581-6.

Eloff, J. N. (1998): A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica, 64: 711-713.

Frate, D. G., Caretta, G. (1990): Fungi isolated from Antarctic material. Polar Biology, 11: 1-7.

Gonçalves, V. N., Carvalho, C. R., Johann, S., Mendes, G., Alves, T. M. A., Zani, C. L., Junior, P. A. S., Murta, S. M. F., Romanha, A. J., Cantrell, C. L., Rosa C. A. and Rosa, L. H. (2015): Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biology, 38: 1143-1152.

Henriquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., Araya, I., Chávez, R., San-Martín, A., Darias, J., Darias, M. J. and Vaca, I. (2014): Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology, 30: 65-76.

Izzo, A., Agbowo, J. and Bruns, T. D. (2005): Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytologist, 166: 619-629.

Jensen, R., Fenical, W. (2002): Secondary metabolites from marine fungi. In: K. D. Hyde (ed.): Fungi in marine environments, vol. 7. Fungal Diversity Press, Hong Kong, pp. 293-315.

Krishnan, A., Alias, S. A., Wong, C. M., Pang, K. L. and Convey, P. (2011): Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biology, 34: 1535-1542.

Krishnan, A., Convey, P., Gonzalez-Rocha, G. and Alias, S. A. (2016): Production of extracellular hydrolase enzymes by fungi from King George Island. Polar Biology, 39: 65-76.

Li, Y., Sun, B., Liu, S., Jiang, L., Liu, X., Zhang, H. and Che, Y. (2008): Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. Journal of Natural Products, 71: 1643-1646.

Magan, N. (2007): Fungi in Extreme Environment. In: C. P. Kubicek, I. S. Druzhinina (eds.): Environmental and Microbial Relationships, The Mycota IV. Springer-Verlag, Berlin, Germany, pp. 85-103.

Melo, I. S., Santos, S. N., Rosa, L. H., Parma, M. M., Silva, L. J., Queiroz, S. C. and Pellizari, V. H. (2014): Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles, 8: 15-23.

Moncheva, P., Tishkov, S., Dimitrova, N., Chipeva, V., Antonova-Nikiolova, S. and Bogatzevska, N. (2002): Characteristics of soil Actinomycetes from Antarctica. Journal of Culture Collections, 3: 3-14.

Morita, R. Y. (1975): Psychrophilic bacteria. Bacteriology Reviews, 39: 144-167.

Ncube, S., Afolayan, J. and Okoh, A. (2008): Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology, 7: 1797-1806.

Nedialkova, D., Naidenova, M. (2005): Screening the antimicrobial activity of Actinomycetes strains isolated from Antarctica. Journal of Culture Collections, 4: 29-35.

Nichols, D. S., Sanderson, K., Buia, A., van de Kamp, J., Holloway, P., Bowman, J. P., Smith, M., Nichols, C. M., Nichols, P. D. and McMeekin, T. A. (2002): Bioprospecting and biotechnology in Antarctica. In: J. Jabour-Green, M. Haward (eds.): The Antarctic: Past, Present and Future. Antarctic CRC Research Report #28, Hobart, Tasmania, Australia, pp. 85-103.

Onofri, S., Selbmann, L., Zucconi, L. and Pagano, S. (2004): Antarctic microfungi as models for exobiology. Planetary and Space Science, 52: 229-237.

Paudel, B., Bhattarai, H., Lee, J., Hong, S., Shin, H. and Yim, J. (2008): Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytotherapy Research, 22: 1269-1271.

Raghukumar, C. (2008): Marine fungal biotechnology: an ecological perspective. Fungal Diversity, 31: 19-35.

Robinson, C. (2001): Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 151: 341-353.

Ruisi, S., Donatella, B., Laura, S., Laura, Z. and Onofri, S. (2007): Fungi in Antarctica. Reviews in Environmental Science and Biotechnology, 6: 127-141.

Sinclair, N. A., Stokes, J. L. (1963): Role of oxygen in the high cell yields of psychrophiles and mesophiles at low temperatures. Journal of Bacteriology, 85: 164-167.

Smith, M. E., Douhan, G. W. and Rizzo, D. M. (2007): Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytologist, 174: 847-863.

Sun, S. H., Huppert, M. and Cameron, R. E. (1978): Identification of some fungi from soil and air of Antarctica. In: B. C. Parker (ed.): Terrestrial Biology III. American Geophysical Union, Washington, D. C., pp. 1-26.

Tosi, S., Casado, B., Gerdol, R. and Caretta, G. (2002): Fungi isolated from Antarctic mosses. Polar Biology, 25: 262–268.

Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D., Willems, A., Peeters, K., Vijver, B., Wever, A., Leliaert, F. and Sabbe, K. (2010): Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 4: 103-113.

Warcup, H. (1950): The soil-plate method for isolation of fungi from soil. Nature, 166: 117-118.

Wynn-Williams, D. D. (1996): Antarctic microbial diversity: the basis of polar ecosystem processes. Biodiversity and Conservation, 5: 1271-1293.


Web sources

[WP1]  GenBank database (http://www.ncbi.nlm.nih.gov/nuccore/).