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ABSTRACT

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodi-
versity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition
of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various
non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising
3909 vegetation-plot records. We focused not only on taxonomic diversity but also on the functional characteristics of communi-
ties. Species richness of most habitat types increased over time, and taxonomic and functional community composition shifted
significantly. Habitat specialists and threatened species became less represented in plant communities, indicating a decline
in habitat quality. The spread of trees, shrubs, tall herbaceous plants, strong competitors, and nutrient-demanding species in
all non-forest habitats, coupled with the decline of light-demanding species, suggests an effect of eutrophication and natural
succession following the abandonment of traditional management. Moreover, we identified specific trends in certain habitats.
In wetlands, springs, and mires, moisture-demanding species decreased, probably due to drainage, river regulations, and in-
creasing drought resulting from climate change. Dry grasslands, ruderal, weed, sand, and shallow-soil vegetation became more

mesic, and successional processes were most pronounced in these communities, suggesting a stronger effect of abandonment of
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traditional management and eutrophication. In alpine and subalpine vegetation, meadows and mesic pastures, and heathlands,

insect-pollinated species declined, and the proportion of grasses increased. Overall, these functional changes provide deep in-
sights into the underlying drivers and help conservationists take appropriate countermeasures.

1 | Introduction

Global change and increasing local anthropogenic pressures
have seriously impacted natural ecosystems and their biodi-
versity in recent decades. The loss of species richness is well
documented at the global scale (Barnosky et al. 2011; Ceballos
et al. 2015; Pimm et al. 2014) but not always reflected in studies
at regional and local scales (Bernhardt-Rémermann et al. 2015;
Dornelas et al. 2014; Vellend et al. 2013). However, changes in
species richness are not the only facet of biodiversity change.
Large turnover in taxonomic community composition has been
identified (Blowes et al. 2019; Hillebrand et al. 2018; Sperandii
et al. 2021), and an important but often neglected aspect in stud-
ies of biodiversity change is a shift in functional community
composition.

The functional characteristics of individual plant species in
a community are determined by environmental conditions
(Lavorel and Garnier 2002). Therefore, changes in the func-
tional community composition can also indicate changes in
environmental conditions. For instance, an increase in thermo-
philous plants would reflect the effects of climate change, and
an increase in woody species would indicate a lack of distur-
bance, for example, after the abandonment of traditional man-
agement practices. Studies of the direct impact of environmental
factors on plant communities are rare and challenging to con-
duct, as time-series data often lack information on environmen-
tal factors, in particular at the fine scale that affects community
composition. To assess their effects, changes in functional com-
munity characteristics can be used as proxies for biodiversity
change drivers (Pakeman et al. 2009, 2017).

Although multiple factors contribute to biodiversity changes
globally, the main threats differ among ecosystems and habitat
types (Chytry et al. 2019; Gigante et al. 2018; Janssen et al. 2016;
Perzanowska and Korzeniak 2020). The response to different
drivers may vary among habitat types depending on their char-
acteristics (Smith, Knapp, and Collins 2009). Some drivers may
affect certain habitats but not others. Therefore, habitat-specific
analyses are needed to identify which factors are responsible for
the changes in a particular community.

Monitoring in permanent plots and repeated surveys of vegeta-
tion plots are commonly used methods to assess changes in plant
communities (Chytry et al. 2014; Kapfer et al. 2017). Repeated
records of plant species composition at the same site represent
the most precise tool to detect not only changes in species rich-
ness but also changes in species abundance, species composi-
tion, and functional community characteristics. Moreover, large
databases collecting plot data from repeated vegetation surveys
(Jandt, Bruelheide, Berg et al. 2022; Knollova et al. 2024; Pauli
et al. 2015; Sperandii et al. 2022; Verheyen et al. 2017) and plant
trait databases (Kattge et al. 2020; Kleyer et al. 2008; Klotz,
Kiithn, and Durka 2002; Weigelt, Konig, and Kreft 2020) have

been compiled recently. These data facilitate synthetic studies of
temporal changes in various biodiversity facets and their com-
parisons across large areas and multiple habitats.

We here explore patterns of long-term changes in plant com-
munities of various non-forest habitats in the Czech Republic.
This study aims to investigate changes at both community and
species levels and focuses not only on changes in taxonomic di-
versity but also on functional and ecological characteristics in
vegetation-plot time series to gain insights into the underlying
global and local factors. We hypothesize that (1) plant species
diversity and functional composition of non-forest habitats have
changed over the last 50years, reflecting changes in global and
local environmental factors; (2) different habitat types under-
went different changes triggered by different drivers; and (3)
changes in functional community composition were more pro-
nounced than changes in taxonomic diversity.

2 | Materials and Methods
2.1 | Study Area

The Czech Republic is a landlocked country in Central Europe
(78,871km?, 48.5°N-51°N, 12°E-19°E, elevation range 115-
1603m a.s.l). The mean annual temperature in the Czech
Republic was 7.4°C in 1971-1990 and 8.7°C in 2004-2023, with a
maximum inJuly (16.8°Cin 1971-1990 and 18.7°C in 2004-2023)
and a minimum in January (-2.4°C in 1971-1990 and —1.1°C in
2004-2023; Czech Hydrometeorological Institute 2024a). The
total annual precipitation was 655mm in 1971-1990 and 679 mm
in 2004-2023 (Czech Hydrometeorological Institute 2024b).

2.2 | Data Acquisition

For the analysis of vegetation change in the non-forest vegeta-
tion of the Czech Republic, we compiled a dataset of repeated
vegetation-plot records from the Czech Republic, which was then
stored in the ReSurveyEurope database (Knollova et al. 2024).
We selected plots sampled between 1971 and 2023 in plots of
1-100m? and plots without information on the plot size, which
we considered to belong to this range, which is standardly used
for sampling of non-forest vegetation.

We classified our dataset into vegetation units (phytosociolog-
ical syntaxa) using the classification expert system CzechVeg-
ESy (Chytry et al. 2020) in the JUICE program (Tichy 2002).
Then we selected vegetation-plot time series that were, at the
time of the first sampling, classified into one of the following
broad habitats: alpine and subalpine vegetation; wetlands;
springs and mires; wet meadows; mesic meadows and pastures;
Nardus grasslands and heathlands; sand and shallow-soil veg-
etation; dry grasslands; and ruderal and weed vegetation (see
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Appendix S1 for the list of alliances assigned to each broad hab-
itat). We excluded vegetation-plot time series that were undergo-
ing rapid changes caused by local human influence, that is, plots
established to track the successional development of vegetation,
experimentally manipulated plots (e.g., experimentally grazed,
mown or fertilized plots), and plots from recently restored sites.
In the case of resurvey studies in which multiple resurvey plots
were sampled to match each historical vegetation plot record,
we used a conservative approach and selected only pairs of the
most similar plot records according to Bray-Curtis dissimilarity
in species composition to minimize pseudoturnover caused by
relocation error (Verheyen et al. 2018).

In total, we obtained 1154 vegetation-plot time series from
53 resurvey studies comprising 3909 vegetation-plot records
(Klinkovska et al. 2025). The length of the time series spanned
from 3 to 48years with a mean of 25. The plots were surveyed
between 2 and 29 times, and the mean interval between the two
consecutive surveys was 9 years. Approximately 50% of the plots
were permanently marked in the field, and almost 80% of the

plots were established in protected areas. For detailed character-
istics of the dataset, see Table 1 and Appendix S2.

For the analysis, we used only records of vascular plants. We
excluded bryophytes and lichens from the species lists, as they
were not sampled consistently across different studies. We stan-
dardized the taxonomic concepts and nomenclature of vascular
plant species according to Kaplan et al. (2019). Most subspecies
were merged to the species level, and some species were merged
into aggregates. For species records determined only to the
genus level, we checked the source data, and if a species was
determined at a lower taxonomic level in a different sampling
event of the same plot, we related this record to the lower-level
taxon (e.g., if Viola species was present in one time, and Viola
hirta in another time in the same plot, Viola species was con-
sidered to be also Viola hirta; for details, see Appendix S3). If
more than one lower-level taxon occurred in another survey of
the same plot, we equally distributed the cover of the genus-level
record among the lower-level taxa. To minimize pseudoturn-
over caused by the misidentification of taxa in some surveys of

TABLE1 | Characteristics of the dataset used for the analysis. For more details, see Appendix S2.

Time series Interval length No. of surveys Prop. of
No. of length (years) (years) in time Prop. of plots in
time permanent protected
series Mean Min Max Mean Min Max Mean Min Max plots (%) areas (%)
All habitats 1154 25 3 48 9 1 48 3.4 2 29 48 77
Alpine and 73 48 17 48 23 3 48 2.3 2 3 1 100
subalpine
vegetation
Wetland 79 23 3 48 10 1 29 3.2 2 7 23 47
vegetation
Spring 154 20 3 48 6 1 45 3.8 2 21 53 95
and mire
vegetation
Wet 219 16 3 48 4 1 36 4.2 2 29 80 74
meadows
Mesic 85 18 5 48 5 1 37 4.2 2 20 54 57
meadows
and
pastures
Nardus 75 35 7 48 18 1 46 2.4 2 6 27 97
grasslands
and
heathlands
Sand and 63 25 4 33 13 1 33 2.8 2 28 13 65
shallow-
soil
vegetation
Dry 364 27 5 48 13 1 37 3 2 28 48 76
grasslands
Ruderal 42 20 5 48 6 1 35 4 2 7 79 79
and weed
vegetation
30f17
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a specific plot, we merged species we suspected to be misidenti-
fied under the name used in the last survey within a given time
series. The list of these changes is available in Appendix S4.
Moreover, we excluded the vernal taxa Anemone nemorosa and
Cardamine pratensis agg. from the plots in the resurvey project
CZ_0019_042 because the surveys were conducted in slightly
different phenological stages (Klinkovska et al. 2023).

We converted categories of different cover scales used to estimate
species cover in vegetation plots to percentages representing the
mean value of each interval. In some resurvey studies, different
cover scales were used in the different surveys. In such cases, we
converted the different cover scales into the least precise scale
used in the time series (usually the nine-grade Braun-Blanquet
scale to the seven-grade Braun-Blanquet scale; Westhoff and van
Der Maarel (1978)).

Species characteristics used in the analysis were obtained from
the Pladias Database of the Czech Flora and Vegetation (Chytry
et al. 2021). They included growth form (Dfevojan 2020), life
strategy scores (Guo and Pierce (2019) following the method of
Pierce et al. (2017)), height (Kaplan et al. 2019), leaf characteris-
tics (E-Vojtko et al. 2020; Findurova 2018; Kleyer et al. 2008; Klotz
and Kiihn 2002), flower characteristics (Durka 2002), reproduc-
tion type (Chrtek 2018; Durka 2002), dispersal strategy (Sadlo
et al. 2018), myrmecochory (Kone¢n4, Stech, and Lep§ 2018),
symbiosis with nitrogen fixers (Blazek and Lep§ 2016), tro-
phic mode (Tésitel et al. 2016), taxon origin (PySek et al. 2022),
Ellenberg-type indicator values (Chytry et al. 2018), indicator
values for disturbance of the herb layer (Herben, Chytry, and
KlimeSova 2016), ecological specialization index (Zeleny and
Chytry 2019), indices of colonization ability (Prach et al. 2017),
and Red List status (Grulich 2017) (see Appendix S5 for more
details).

2.3 | Data Analysis

2.3.1 | Changes in Species Diversity and Community
Characteristics

For each plot record, we calculated the species richness, Pielou's
index of evenness (Shannon index/log(species richness)), and
the community-weighted and unweighted means for each spe-
cies characteristic. To test the changes in these variables, we fit-
ted a linear model for each variable (species richness, Pielou's
evenness, and community-weighted and unweighted means)
with time as a predictor within each time series. We excluded
time series consisting of plots of different sizes for the calcula-
tions of trends in species richness and Pielou's evenness.

We tested the probability of detecting a positive trend using a
generalized additive model with a restricted maximum likeli-
hood method, assuming a binomial error distribution (positive
trend =1, negative trend=0). We included spatial coordinates
as a smoothing term based on spherical splines to account for
spatial autocorrelation and the resurvey study identity (a group
of related time series) as a random effect in the model to account
for methodological differences between the different resurvey
studies. We considered the trends derived from the time series

surveyed more times more reliable. Therefore, we weighted
the observations of change by the square root of the number of
surveys within the time series. We calculated the results for the
whole dataset and each habitat type separately by including hab-
itat identity as a predictor.

We visualized the differences between temporal trends in dif-
ferent habitats using a principal component analysis of the esti-
mated trends for community-unweighted means resulting from
the generalized additive model. In this analysis, we used only
species characteristics with a significant trend in at least one
habitat type and estimates based on at least five observations
of change.

Some studies of biodiversity change used an alternative ap-
proach consisting of dividing each time series into separate ob-
servations of change between two consecutive years (e.g., Jandt,
Bruelheide, Jansen et al. 2022). We compared the analysis using
this method with our approach and found similar results using
both methods (see Appendix S6 for more details and an alterna-
tive analysis).

2.3.2 | Changes in Species Composition

We tested changes in the species composition over time for
each habitat using a constrained ordination (distance-based re-
dundancy analysis) with square-root transformation of species
percentage covers and square root of Bray—Curtis dissimilarity.
Time was included in the model as a constraining variable, and
plotidentity was treated as a covariate. We tested the significance
of changes in species composition over time using a permutation
test with 999 permutations of observations within plots.

2.3.3 | Changes at the Species Level

We tested the changes in the presence of each species using the
generalized linear model with binomial error distribution for
species presence/absence data with time as a predictor. To test
the changes in species cover, we fitted a linear model for species
cover with time as a predictor within each time series. Time se-
ries consisting of plots of different sizes were excluded from this
analysis. We extracted the slope of the trend from the model and
coded the increasing trends as 1 and negative trends as 0. Then,
we tested the probability of detecting a positive trend in changes
in species cover or species presence using a binomial test, as the
number of observations for many species was insufficient to use
a more complicated model accounting for spatial autocorrela-
tion. Only species with significant trends based on at least 30
observations of change from more than 15 sites (grid cells of 3’
of latitude x5’ of longitude, approximately 5.5Xx 6km) were re-
ported. We analyzed the whole dataset and then each habitat
type separately. Species identified only to the genus level were
excluded from this analysis.

The data analysis was performed using the R program (R Core
Team 2023) with the packages vegan (Oksanen et al. 2022) and
mgcv (Wood 2011). Functions from the packages tidyverse
(Wickham et al. 2019); readx]l (Wickham, Bryan, et al. 2023);
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and broom (Robinson et al. 2023) were used for the data han-
dling. Graphs were created using functions from the packages
ggplot2 (Wickham 2009); patchwork (Pedersen 2024); and
scales (Wickham, Pedersen, et al. 2023).

3 | Results

3.1 | Changes in Species Richness and Diversity
Indices

We identified a few significant temporal changes in taxo-
nomic diversity at the community level. There were signifi-
cant positive trends for species richness in wetlands, springs
and mires, Nardus grasslands and heathlands, and dry grass-
lands (Figure 1a). Positive trends for Pielou's evenness were de-
tected in spring and mire, and alpine and subalpine vegetation
(Figure 1b).

3.2 | Changes in Species Composition
and Individual Species

Although not many significant changes in plant taxonomic di-
versity at the plot level were detected, all habitats showed sig-
nificant temporal changes in species composition (p<0.001).
Of the 1147 taxa included in the analysis, a significant decrease
was found in the presence of 104 species and a significant in-
crease in 109 species (Appendix S7). A significant decrease in
cover occurred in 60 species, whereas the cover of 172 species
significantly increased. Many shrubs (e.g., Cornus sanguinea,
Crataegus spp., Ligustrum vulgare, Prunus spinosa, Rhamnus
cathartica, and Rosa canina agg.) and competitive grasses (e.g.,
Arrhenatherum elatius, Bromus erectus, and Calamagrostis
epigejos) significantly increased in both their presence and
cover (Figure 2). Specialists of dry grasslands and pastures
(e.g., Bupleurum falcatum, Carlina acaulis, Jasione montana,
and Pulsatilla grandis) but also specialists of springs and mires,

(a) Species richness

wetlands, and wet meadows (e.g., Eriophorum angustifolium,
Valeriana dioica agg., and Viola palustris) or grasslands at
higher altitudes (e.g., Crepis mollis) appeared among the de-
creasing species. Species significantly increasing or decreasing
in each habitat type are listed in Appendix S7.

3.3 | Common Patterns of Changes in Functional
and Ecological Characteristics

Across the whole dataset of the non-forest vegetation, we
identified a significant increase of trees, shrubs, tall plants,
grasses, strong competitors, species with mesomorphic leaves,
allogamous, autochorous, zoochorous, and myrmecochor-
ous species, species with higher nutrient requirements, suc-
cessful colonizers of new habitats and Least Concern species
(Figure 3). In contrast, polycarpic herbs, species with scler-
omorphic leaves, apomictic, insect-pollinated, anemochor-
ous, hydrochorous, light-demanding, more specialized, and
threatened species became less represented in plant commu-
nities. There was no significant trend in the representation of
neophytes. Compared with the results from the linear trend
approach presented here, the interval change approach re-
vealed fewer significant changes but of the same direction
(Appendix S8).

3.4 | Differences Between Habitat Types

There were considerable differences in temporal trends between
habitats (Figure 4). Along the first ordination axis, wetlands and
alpine and subalpine vegetation were clearly separated from the
other habitats at the opposite ends of the gradient. In wetlands,
ruderal species and species with higher SLA increased. In the al-
pine and subalpine vegetation, the proportion of grasses and gram-
inoids increased the most, and there was a significant increase
in clonal herbs, stress-tolerant species and species adapted to
stronger disturbances (Figure 3, Appendix S8). Insect-pollinated

(b) Pielou evenness

All habitats 4

Alpine and |

- o

1 ®
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subalpine vegetation
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FIGURE1 | The probability of detecting a positive trend for (a) species richness (number of vascular plant species) and (b) Pielou's evenness in

each habitat within each time series. Points represent the probability estimates from the generalized additive models, and lines represent the 95%

confidence intervals.
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FIGURE 2 | The probability of an increase in (a) presence and (b) cover of individual species. The green bars represent the estimated probability
of increase from the binomial test, and the error bars indicate the 95% confidence intervals. Only species with significant trends according to the test

based on at least 30 observations of change in more than 15 grid cells are shown. See Appendix S7 for the list of all species with significant positive

and negative trends in the whole dataset and lists of species increasing or decreasing in different habitat types.

species declined in the alpine and subalpine vegetation, meadows
and mesic pastures, and Nardus grasslands and heathlands.

Species with higher moisture requirements decreased in wet-
lands, springs, and mires, whereas there was no or positive
trend for moisture indicator values in the other habitats. This
was also associated with the decrease of species with helomor-
phic leaves adapted to wet conditions in wetlands, springs, and
mires. The representation of grasses significantly increased in
these habitats, whereas the proportion of graminoids declined,

indicating the decrease of specialized Cyperaceae species and
Juncus for the benefit of grasses. In dry grasslands, ruderal
and weed vegetation, and sand and shallow-soil vegetation,
displayed at the opposite end of the second ordination axis,
the increase was most pronounced in competitively strong tall
species with large leaves, trees, and shrubs. At the same time,
species with higher requirements for light decreased most in
these habitats. Wind-pollinated species significantly increased
in meadows and mesic pastures; however, they declined in
wetlands.
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4 | Discussion

Based on the analysis of repeated vegetation-plot records, we
did not identify any significant negative trends in species rich-
ness and evenness in non-forest plant communities in the Czech
Republic. In most habitats, the species richness increased over
time. However, there were nonrandom changes in community
composition reflected in shifts in functional characteristics.
Trees, shrubs, taller plants, stronger competitors, species suc-
cessful in colonization of new habitats, and species with high
nutrient requirements increased significantly in most non-forest

habitats. In contrast, insect-pollinated, light-demanding, highly
specialized, and threatened species became less represented in
plant communities. Moreover, we identified considerable differ-
ences in temporal trends between habitats. Moisture-demanding
species decreased in wetlands, springs, and mires, whereas me-
sophilous species increased in dry grasslands. The increase of
taller species with larger leaves, competitively strong species,
trees, and shrubs was most pronounced in dry grasslands, rud-
eral and weed vegetation, and sand and shallow-soil vegetation,
whereas mostly grasses increased in alpine and subalpine vege-
tation; wetlands; springs and mires; and wet meadows.
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4.1 | No Net Loss in Species Richness

Previous studies of temporal changes in species richness have
shown contrasting results. Synthetic studies of community-
level species richness change over time (Bernhardt-
Romermann et al. 2015; e.g., Dornelas et al. 2014, 2019; Vellend
et al. 2013) often show a balance between the number of de-
creasing and increasing species, whereas there is evidence for
both increasing (Kolari et al. 2021; Navratilova, Navratil, and
Hajek 2022; Steinbauer et al. 2018) and decreasing species
richness (Harasek, Klinkovskd, and Chytry 2023; Klinkovska,
Sperandii et al. 2024; Wesche et al. 2012) in different non-forest
habitats across Europe. We identified a significant increase in
plot-level species richness in most non-forest habitats in the
Czech Republic. However, the increase in species richness
identified in most habitats should not be interpreted as an
overall increase in the habitat quality as the increase in species
richness might be caused by many different factors, including
those leading to a habitat quality deterioration, e.g., an up-
ward shift of species in the mountains due to climate warm-
ing (Lenoir et al. 2008; Pauli et al. 2012; Steinbauer et al. 2018;
Walther, Beifiner, and Burga 2005), expansions of general-
ist species and species typical for other habitats (Bergamini
et al. 2009; Navratilova, Navratil, and Hajek 2022), or succes-
sional processes (Prach et al. 2014). These processes probably
also contributed to the increases in species richness in our
dataset because, at the same time, habitat specialists declined,
and competitive and woody species became more abundant in
the non-forest vegetation. Moreover, the increase in species
richness in time-series data should be interpreted cautiously,
as the positive trend is more likely to be detected because of the
imbalance between the colonizations and extinctions under
changing environmental conditions (Kuczynski, Ontiveros,
and Hillebrand 2023) and because the list of species present
in the plot is usually available for the resurvey study, and thus,
the observer is more likely to detect more species than in the
first survey.

4.2 | Changes at the Species Level

We identified significant nonrandom turnover in the species
composition of plant communities. Among the most increasing
species, many woody species (e.g., Cornus sanguinea, Crataegus
spp., Ligustrum vulgare, Prunus spinosa, and Rosa canina agg.)
and competitive grasses (e.g., Arrhenatherum elatius, Bromus
erectus, and Calamagrostis epigejos) appeared. The spread of
these species has also been documented in other European
countries (Giarrizzo et al. 2017; Poniatowski et al. 2018; Ridding
et al. 2020), and we confirmed the spread of several species
assessed as expansive in the Czech Republic (Axmanova
et al. 2024).

In line with studies of vegetation change in different parts
of Europe (Bergamini et al. 2009; Diekmann et al. 2019;
Klinkovskd, Glaser et al. 2024; Peppler-Lisbach et al. 2020),
mainly habitat specialists (e.g., Bupleurum falcatum, Carlina
acaulis, Eriophorum angustifolium, Jasione montana, Pulsatilla
grandis, Valeriana dioica agg. and Viola palustris) decreased
significantly, which suggests a gradual decline in habitat
quality.

4.3 | Changes in Functional and Ecological
Characteristics

Although the diversity of species functional traits belongs to the
Essential Biodiversity Variables (Pereira et al. 2013) that should
be considered when evaluating the state of biodiversity, the as-
sessments of functional aspects are considerably less represented
among studies of biodiversity change than studies of changes in
community species richness. We quantified changes in func-
tional community characteristics to identify possible causes of
changes in plant communities. The increase in taller plants and
stronger competitors, including woody species in all non-forest
habitats, together with the decrease in light-demanding species
(e.g., Asperula cynanchica, Linum catharticum, and Koeleria py-
ramidata), suggests an effect of successional processes in the ab-
sence of appropriate management. This trend is consistent with
the results of studies of changes in non-forest vegetation across
Europe (Finderup Nielsen, Sand-Jensen, and Bruun 2021; Jandt,
von Wehrden, and Bruelheide 2011; Pakeman et al. 2017; Smart
et al. 2005) and may be attributed to the abandonment of tradi-
tional management of non-forest habitats by grazing or mow-
ing (Bauerkdmper and Iordachi 2014; Bic¢ik et al. 2015; Chytry
et al. 2017). The fact that these negative trends also appear in
a dataset consisting of 80% of plots located in protected areas
where conservation management has been introduced to main-
tain biodiversity raises concerns about the effectiveness of con-
servation management in the face of environmental changes.

The increase in indicator values for nutrients suggests that eu-
trophication caused by atmospheric nitrogen deposition, leach-
ing and wind transport of nutrients from fertilizers applied to
arable land is another driver contributing to changes in Czech
plant communities. An increasing proportion of grasses in plant
communities might also be interpreted as a result of eutrophica-
tion (Kirkham, Mountford, and Wilkins 1996; Smart et al. 2005).
However, it is hard to separate the effects of eutrophication and
natural succession because increased nutrient availability might
also be caused by increased litter accumulation after the aban-
donment of traditional management (Enyedi, Ruprecht, and
Dedk 2008; Ruprecht et al. 2010), and successional processes
might be fostered by an increased amount of nutrients in the
ecosystem. Both processes support stronger competitors and
likely contribute to the vegetation changes jointly (Diekmann
et al. 2019; Jacquemyn, Brys, and Hermy 2003; Klinkovska,
Sperandii et al. 2024). Moreover, increasing temperatures due to
climate change might extend the growing season and thus foster
biomass production and successional processes (Hillier, Sutton,
and Grime 1994; Peringer et al. 2013; Sternberg et al. 1999; Wu
et al. 2011).

Our results are in line with the national Red List classification
(Grulich 2017), as we identified a significant decline in the pro-
portion of threatened species in plant communities. The ob-
served decline in ecologically specialized species (many of them
included in the Red List) is consistent with the results of stud-
ies in different habitats across Europe (Diekmann et al. 2019;
Finderup Nielsen, Sand-Jensen, and Bruun 2021; Jansen
et al. 2020; Klinkovska, Glaser, et al. 2024; Kolari et al. 2021;
Peppler-Lisbach et al. 2020). Ecologically specialized species
might decline because of the spread of competitively strong spe-
cies due to successional processes and eutrophication. Highly
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specialized species are often stress-tolerant and adapted to
nutrient-poor conditions (Zeleny and Chytry 2019). The long-
term stability of such species depends on specific conditions
(Héajek et al. 2020), they are often steadily outcompeted by
stronger competitors supported by eutrophication or abandon-
ment of traditional management (Czortek et al. 2018; Diekmann
et al. 2014; Hautier, Niklaus, and Hector 2009; Krahulec
et al. 2001; Louault et al. 2005). Although there is a general pat-
tern of the decline of species with a narrow ecological niche, this
species group consists of species adapted to different conditions,
often near the extremes of environmental gradients (Zeleny and
Chytry 2019). The factors contributing to a decline in habitat
quality partly differ among habitats; therefore, it is necessary
to identify the factors contributing to the decline of specialized
species in particular habitats.

4.4 | Differences Between Habitats

Changes in traits reflecting water availability differed con-
siderably among habitat types. Whereas species with higher
moisture demands decreased in wetlands, springs, and mires,
species with higher Ellenberg-type indicator values for mois-
ture increased in alpine and subalpine vegetation and dry
grasslands. Species with helomorphic leaves adapted to wet con-
ditions declined in wetlands, springs, and mires, but at the same
time, there was a significant decline of species with succulent
and scleromorphic leaves adapted to dry conditions in Nardus
grasslands and heathlands, sand and shallow soil vegetation,
dry grasslands, and ruderal and weed vegetation. Furthermore,
species with mesomorphic and hygromorphic leaves, which are
in the middle of the leaf anatomy spectrum, increased in most
habitat types.

The decline of species adapted to wet conditions in humid hab-
itats such as springs, mires, and wetlands suggests not only a
strong effect of local changes in water regime caused by drain-
age and river regulations but also increasing drought under cli-
mate change. Climate change effects are also indicated by the
increase in species with higher Ellenberg-type indicator val-
ues for temperature in springs and mires. Our results indicate
that changes in hydrographic functioning belong to the most
threatening factors for the wetland, spring, and mire vegeta-
tion, as suggested by the national Red List of habitats (Chytry
et al. 2019) and several resurvey studies across Europe (Koch and
Jurasinski 2015; Milson, Backéus, and Rydin 2008; Navratilova,
Navratil, and Héjek 2022; Ortmann-Ajkai et al. 2018; Pasquet,
Pellerin, and Poulin 2015). The positive trend in evenness in
springs and mires might be associated with increased herb layer
productivity and abundance of grasses due to a decline in water
level, as the decrease in water level leads to nutrient enrichment
due to the mineralization of organic matter (Wassen and Olde
Venterink 2006) and fosters successional processes by reducing
anoxia. Competitively strong generalist grasses might also be
supported by reduced disturbances after the abandonment of
traditional management (Hdjkovd et al. 2022). Competitive ex-
clusion might then contribute to the decline of wetland, spring,
and mire specialists. Although grasses significantly increased
in these habitats, the representation of graminoids in wetlands
and springs and mires declined, reflecting a decline of habitat
specialists from the Cyperaceae family, for example, Eleocharis

palustris agg. or Eriophorum angustifolium. The decline of these
species is also reflected in the decreasing proportion of wind-
pollinated plants. Ruderal species increasing in wetlands (e.g.,
Urtica dioica) might also be supported by drier and nutrient-
richer conditions.

Despite the increasing frequency of drought events and increased
evapotranspiration under rising temperatures, mesophilous spe-
cies increased in dry habitats. Together with the most pronounced
spread of woody species and the decline of light-demanding spe-
cies in these habitats, this indicates a stronger effect of abandoning
traditional management and consequent successional processes
than global warming and drought events. For the competitively
stronger mesophilous species, moisture might not be the limiting
factor, they profit from the reduced disturbance regime, increased
nutrient supply after the cessation of grazing or mowing, and
longer growing season under climate change (H4jek et al. 2017;
Jacquemyn, Brys, and Hermy 2003; Jernej et al. 2019; Kelemen
et al. 2014; Louault et al. 2005; Wu et al. 2011). Moreover, the
spread of mesophilous species can also be supported by eutrophi-
cation and increased atmospheric CO, because less transpiration
is needed to acquire the same amount of nutrients under increased
nutrient levels or CO, under increased atmospheric concentration,
respectively; thus, less drought-tolerant species might also sur-
vive in dry conditions (Kirschbaum and McMillan 2018; Swann
et al. 2016; Walther 1960).

In line with studies from different European regions (Biesmeijer
et al. 2006; Pakeman et al. 2017; Pan et al. 2024; Wesche
et al. 2012), we identified a decline in insect-pollinated plants,
especially in alpine and subalpine vegetation, Nardus grass-
lands and heathlands, and meadows and pastures. This is prob-
ably another consequence of abandonment and eutrophication,
which support the spread of competitive grasses over herbs
(Batary et al. 2010; Dupré et al. 2010; Ehlers, Bataillon, and
Damgaard 2021).

4.5 | Different Approaches to Detect a
Temporal Trend

For the analysis of temporal trends in time-series data, we pre-
ferred a linear trend approach that takes into account all data
points from the given time series by fitting a linear trend over
the whole time series. A similar approach was used, for example,
by Dornelas et al. (2014, 2019). An alternative approach, inter-
val change, was used, for example, by Jandt, Bruelheide, Jansen
et al. (2022). It consists of dividing each time series into obser-
vations of change between two subsequent surveys. Trends de-
tected by both approaches in our data mostly followed the same
direction, but the linear trend approach detected more significant
trends (Appendix S6). We consider the linear trend approach more
appropriate for capturing long-term trends in time-series data
because by dividing the time series into short intervals, short-
term fluctuations may be detected rather than long-term trends.
Such fluctuations can be caused by interannual dynamics due to
weather fluctuations, which also exist in communities stable in
the long term (Dostélek and Frantik 2011; Fischer et al. 2020). In
contrast, directional long-term trends might be masked by inter-
annual fluctuations when both positive and negative short-term
changes occur, but one of them is of a larger magnitude. In such
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a case, there might be even an equal number of positive and neg-
ative interval changes but a considerable directional long-term
trend detectable by the linear trend approach.

4.6 | Possible Drawbacks and Representativeness
of the Results

Our dataset is not free of biases common in resurvey studies,
such as relocation and observer error (Verheyen et al. 2018).
However, we used a conservative approach and paid attention to
minimizing pseudoturnover due to misidentification and reloca-
tion errors by thorough nomenclature unification and selection
of the most similar pairs of plots in the case of resurvey studies
in which multiple resurvey plots were sampled to match each
historical plot. Especially, the trends in the species richness have
to be interpreted with caution as these characteristics are more
sensitive to observer and relocation biases (Verheyen et al. 2018)
and changes in sampling effort in different surveys. However,
according to Boch et al. (2019, 2022), detecting trends in func-
tional traits and ecological characteristics is robust to these bi-
ases. Differences in sampling effort should affect the estimates
of changes in these variables less than the changes in species
richness, as the observer is likely to find more species when the
list of species from the previous survey is available but would
not intentionally look for specific species groups, such as species
with higher indicator values for nutrients.

Our dataset also suffers from limited spatial representative-
ness and bias toward sites least affected by human influence.
Permanent plots are typically established for vegetation monitor-
ing, that is, at sites with the vegetation composition closest to the
desired state where no big changes in management practices are
expected. Resurvey studies are usually based on historical vege-
tation plots first sampled for vegetation classification purposes,
for which the best-developed communities of the given vegetation
type were sampled. The most common practice while resampling
historical vegetation plots is to sample vegetation with the most
similar species composition as recorded originally. This conserva-
tive approach is also applied in the analyses when selecting the
most similar new plot when several plots were resurveyed at the
site of one historical plot. Moreover, sites that changed completely,
for example, were transformed into arable land, afforested, or built
up, were usually not resampled; thus, these large changes are not
captured. Almost 80% of the plots included in our dataset were
from protected areas, where conservation management has been
introduced to maintain the habitat quality. Due to the preferential
sampling, our results describe mainly trends in habitats of high
quality at the time of the first sampling and at sites that experi-
enced no major land-use changes. Moreover, we did not consider
changes in bryophytes, which can be more sensitive to environ-
mental changes than vascular plants in some habitats, especially
in springs and mires. Consequently, our results likely underesti-
mate the overall trends of vegetation change in the Czech Republic.

5 | Conclusions

The analysis of vegetation-plot time series data showed consider-
able temporal changes in habitat quality of temperate non-forest

habitats across the Czech Republic. Species richness of most habi-
tat types increased over time; however, changes in species compo-
sition and functional characteristics of plant communities revealed
negative trends in habitat quality across all habitats. Among the
declining species, insect-pollinated, light-demanding species,
habitat specialists, and threatened species were more represented.
On the other hand, competitively strong species, including woody
species and grasses, increased together with nutrient-demanding
species, suggesting an effect of eutrophication and natural suc-
cession in the absence of appropriate conservation management.
Differences in temporal trends between habitats suggest differ-
ent importance of different threatening factors. The decline of
moisture-demanding species in wetlands, springs, and mires re-
flected changes in water regime that might have been caused by
drainage, river regulations, and increasing drought under climate
change. In dry grasslands, ruderal and weed vegetation, and sand
and shallow soil vegetation, competitively strong species, trees,
and shrubs increased most in these habitats suggesting a stronger
effect of successional processes. Natural succession and eutrophi-
cation might also contribute to the changes in the alpine and subal-
pine vegetation, meadows and mesic pastures, Nardus grasslands
and heathlands, where insect-pollinated species declined the most
and the representation of grasses increased.
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