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1  | INTRODUCTION

A	central	aim	in	functional	macroecology	is	to	understand	to	what	de-
gree	plant	morphological	and	physiological	traits	(Violle	et	al.,	2007)	
affect species’ distributions at large spatial scales (i.e. occurrences 

across the geographic and climatic space), as well as local abun-
dances	within	communities	(Brown,	1995;	McGill	et	al.,	2006).	The	
limits	of	species’	broad-	scale	distributions	reflect	the	 interplay	be-
tween dispersal barriers and bioclimatic conditions that affect range 
dynamics and evolution (Baselga et al., 2012). In contrast, species’ 
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Abstract
Aim: Plant	functional	traits	summarize	the	main	variability	in	plant	form	and	function	
across	taxa	and	biomes.	We	assess	whether	geographic	range	size,	climatic	niche	size,	
and local abundance of plants can be predicted by sets of traits (trait syndromes) or 
are driven by single traits.
Location: Eurasia.
Methods: Species distribution maps were extracted from the Chorological Database 
Halle	to	derive	information	on	the	geographic	range	size	and	climatic	niche	size	for	
456	herbaceous,	dwarf	shrub	and	shrub	species.	We	estimated	local	species	abun-
dances	based	on	740,113	vegetation	plots	 from	 the	European	Vegetation	Archive,	
where	abundances	were	available	as	plant	species	cover	per	plot.	We	compiled	a	com-
plete	species-	by-	trait	matrix	of	20	plant	functional	traits	from	trait	databases	(TRY,	
BiolFlor	and	CLO-	PLA).	The	relationships	of	species’	geographic	range	size,	climatic	
niche	size	and	local	abundance	with	single	traits	and	trait	syndromes	were	tested	with	
multiple linear regression models.
Results: Generally, traits were more strongly related to local abundances than to 
broad-	scale	species	distribution	patterns	in	geographic	and	climatic	space	(range	and	
niche	size),	but	both	were	better	predicted	by	trait	combinations	than	by	single	traits.	
Local	 abundance	 increased	with	 leaf	 area	 and	 specific	 leaf	 area	 (SLA).	Geographic	
range	size	and	climatic	niche	size	both	increased	with	SLA.	While	range	size	increased	
with	plant	height,	niche	size	decreased	with	leaf	carbon	content.
Conclusion: Functional traits matter for species’ abundance and distribution at both 
local	 and	 broad	 geographic	 scale.	 Local	 abundances	 are	 associated	with	 different	
combinations	 of	 traits	 as	 compared	 to	 broad-	scale	 distributions,	 pointing	 to	 filter-
ing by different environmental and ecological factors acting at distinct spatial scales. 
However,	traits	related	to	the	leaf	economics	spectrum	were	important	for	species’	
abundance	and	occurrence	at	both	spatial	scales.	This	finding	emphasizes	the	general	
importance	of	resource	acquisition	strategies	for	the	abundance	and	distribution	of	
herbaceous, dwarf shrub and shrub species.

K E Y W O R D S

chorological	database	Halle	(CDH),	climatic	niche,	commonness	and	rarity,	European	
Vegetation	Archive	(EVA),	functional	traits,	geographic	range,	macroecology,	vegetation-	plot	
data
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local abundance depends on factors operating at the local scale of 
species assemblages, such as habitat suitability, the local combina-
tion of environmental conditions, and biotic interactions (Peterson 
et	 al.,	 2011;	 Staniczenko	 et	 al.,	 2017).	Under	 the	 assumption	 that	
species’ functional traits reflect the mechanisms through which 
species	 respond	 to	abiotic	 and	biotic	 conditions	 to	maximize	 their	
fitness,	these	traits	are	expected	to	predict	both	broad-	scale	distri-
bution	and	local	abundances	(Suding	et	al.,	2008;	Heino	&	Tolonen,	
2018).

Species can be rare or common (i.e. less or more abundant) 
within a local plant community. Similarly, some species have 
restricted distribution ranges while others are geographically 
widely	 distributed	 (Rabinowitz,	 1981;	 Gurevitch	 et	 al.,	 2002;	
Enquist	et	al.,	2019).	It	has	been	observed	that	species	with	larger	
geographic	range	sizes	tend	to	have	broader	environmental	toler-
ances (i.e. broader climatic niches), while geographically narrowly 
distributed	species	are	also	more	likely	to	be	narrowly	distributed	
in	 climatic	 space	 (Slatyer	 et	 al.,	 2013;	 Sporbert	 et	 al.,	 2020).	 A	
positive	relationship	between	climatic	niche	size	and	geographic	
range	size	across	 species	 thus	 seems	 to	be	a	general	macroeco-
logical pattern (Gaston, 2000; Slatyer et al., 2013; Cardillo et al., 
2019).	A	species’	local	abundance	results	from	population	growth	
and	 demographical	 performance	 (Peterson	 et	 al.,	 2011).	Within	
the geographic distribution range of a species, its local abundance 
at	the	community	level	is	often	highly	variable.	At	the	local	scale,	
species	 abundance	 values	 are	 frequently	 used	 as	 descriptors	 of	
species performance and are an important characteristic of the 
composition	 of	 herbaceous	 plant	 communities	 (Kent	 and	 Coker,	
1992; Chiarucci et al., 1999). In general, locally rare species tend 
to	have	a	 sparse	cover	 in	plant	 communities	 (Murray	&	Lepschi,	
2004).	 Thus,	 potentially,	 local	 cover	 could	 also	 be	 considered	 a	
proxy	for	 local	 rarity	or	commonness.	However,	 local	cover	 is	 in	
general low at most sites and high at only a few sites across a 
species’	 distribution	 range	 (Murphy	 et	 al.,	 2006).	 In	 contrast	 to	

“everywhere sparse” species, these “somewhere abundant” spe-
cies	 are	 reflected	 in	 right-	skewed	 species	 abundance	 distribu-
tions,	 a	 common	 pattern	 in	 plant	 community	 ecology	 (McNellie	
et	al.,	2019).	This	skewness	in	local	abundance	might	be	caused	by	
the distribution of optimal ecological conditions, and thus, might 
be	causally	linked	to	functional	traits.	As	mean	abundance	across	
the species range itself does not capture the full variability of 
skewed	frequency	distributions,	it	should	be	considered	together	
with	the	skewness	of	a	species’	cover	value	across	its	distribution	
range as proxies for rarity or commonness.

Functional traits have been used as proxies for species’ disper-
sal	 abilities	 (Greene	 and	 Johnson	 1993;	 Thompson	 et	 al.,	 2011),	
environmental	 tolerances	 (Loehle,	1998;	Bohner	&	Diez,	2020)	or	
competitiveness	 (Kunstler	 et	 al.,	 2016).	 Specific	 functional	 traits	
have	been	linked	to	commonness	and	rarity	on	both	local	and	large	
scales	(see	Table	1).	For	example,	studies	have	found	plant	height,	
used as a proxy for competitive ability, to be positively correlated 
with	range	size,	with	taller	species	more	widespread	than	shorter	
ones	(Lavergne	et	al.,	2004;	Kolb	et	al.,	2006).	Similarly,	on	the	local	
scale, common (i.e. more abundant) species have been associated 
with taller stature and with other traits that are proxies for species’ 
physiological activity and productivity, including larger specific leaf 
area	(SLA)	and	higher	leaf	nitrogen	(N)	content	(Grime	et	al.,	1997;	
Hegde	 &	 Ellstrand,	 1999;	 Lavergne	 et	 al.,	 2004;	Mariotte,	 2014;	
Lachaise	et	al.,	2020).	Nitrogen	(N)	and	phosphorus	(P)	availabilities	
limit	plant	growth	in	most	terrestrial	ecosystems	(Güsewell,	2004).	
Low	nutrient	 availability	 (e.g.	 phosphorus	 limitation)	may	weaken	
the	relationship	between	productivity-	related	traits	and	macrocli-
mate	 (Bruelheide	et	 al.,	 2018).	As	 a	 consequence,	 there	might	be	
a	 negative	 correlation	 between	 species’	 N:P	 ratio	 and	 both	 their	
local	 abundance	 and	 broad-	scale	 distribution.	 Regarding	 species’	
persistence, locally more abundant species have been associated 
with	perennial	 life	cycle	and	clonal	growth	(Eriksson	&	Jakobsson,	
1998;	 Kolb	 et	 al.,	 2006).	 In	 contrast,	 at	 large	 spatial	 scales,	 rare	

TABLE  1 Traits	used	in	this	study,	their	function	in	the	community,	and	their	reported	correlation	with	local	abundance	and	broad-	scale	
distribution	being	unimodal	(─),	positive	(↑)	or	negative	(↓)

Trait Function

Reported correlation with

Local abundance Broad- scale distribution

Specific	leaf	area,	leaf	C,	leaf	N,	leaf	P,	
leaf dry matter content

Productivity, competitive ability, 
leaf economics spectrum

Specific	leaf	area	↑1 ,		─3 ,	
leaf	N	↑1 

Specific	leaf	area	─2 ,	↑3 ,	leaf	N	─2 ,	
leaf	dry	matter	content	─2 

Leaf	N:P	ratio Nutrient	supply ↓4,15  ↓4,15 

Plant height, leaf area Competitive ability Plant	height	↑1,2,5,6 ,	leaf	
area	↑1 

Plant	height	─7 ,	↑2,8 

Seed mass, seed number per 
reproductive unit, dispersal unit 
length

Dispersal, regeneration Seed	mass	─7,8,14 ,	↓14 ,	seed	
number per reproductive 
unit	↓4,8 

Seed	mass	─2,10 ,	↑8 ,	↓11,12 ,	seed	
number	per	reproductive	unit	↑2,8,9 

Life	cycle,	life	form,	clonality Persistence Perennials	↑7,8 ,	clonal	
growth	↑7,8 

Annuals	─8 ,	perennials	─8 ,	
therophytes	↑8 ,	phanerophytes	
↓8 ,	clonal	growth	─7 ,	↓7 

1Mariotte	(2014);	2Lavergne	et	al.	(2004);	3Lachaise	et	al.	(2020);	4Bruelheide	et	al.	(2018);	5Hedge	&	Ellstrand	(1999);	6Grime et al. (1997); 7Eriksson	
&	Jakobsson	(1998);	8Kolb	et	al.	(2006);	9Van	der	Veken	et	al.	(2007);	10Thompson	et	al.	(1999);	11Guo et al. (2000); 12Oakwood	et	al.	(1993);	13Kelly	&	
Woodward	(1996);	14Leishman	&	Murray	(2001);	15Güsewell	(2004).
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species	have	been	associated	with	prevailing	clonal	growth	 (Kelly	
&	 Woodward,	 1996)	 and	 woodiness	 (Oakwood	 et	 al.,	 1993).	
Several	 studies	have	 investigated	 the	 relationships	 linking	disper-
sal	or	regeneration-	related	traits	with	species’	local	abundance	and	
broad-	scale	 distribution	 patterns.	On	 the	 local	 scale,	more	 abun-
dant species were found to produce fewer and lighter seeds than 
rare	species	(Hedge	&	Ellstrand,	1999;	Guo	et	al.,	2000;	Kolb	et	al.,	
2006). In contrast, at large spatial scales, geographically widespread 
species have been found to produce significantly more and heavier 
seeds	than	small-	ranged	plant	species	(Lavergne	et	al.,	2004;	Kolb	
et	al.,	2006;	Van	der	Veken	et	al.,	2007).

While	 some	 studies	 have	 found	 relationships	 between	 func-
tional	 traits	and	 local	abundance	and/or	broad-	scale	distribution	
patterns, others have failed to detect a clear correlation (see 
Table	 1).	 So	 far,	 the	 majority	 of	 studies	 have	 focused	 on	 single	
traits rather than on trait combinations or trait syndromes (but 
see	Díaz	et	al.,	2016;	Guo	et	al.,	2018)	as	predictors	of	 large	and	
local	distribution	patterns.	However,	no	single	trait	can	completely	
describe	 a	 species’	 ecological	 strategy	 (Winemiller	 et	 al.,	 2015;	
Marino	et	al.,	2020).	Rather,	species’	local	abundance	and	broad-	
scale distribution patterns might be affected by different sets of 
traits	(Marino	et	al.,	2020).	It	has	been	suggested	that	locally	rare	
and geographically restricted plant species differ systematically 
from more common species in functional traits that are related 
to species’ productivity, competitive ability, dispersal, regenera-
tion	and	persistence	(Murray	et	al.,	2002).	However,	the	different	
states and values of traits cannot be unconditionally combined. 
Díaz	et	al.	 (2004)	highlighted	that	 the	 functional	space	occupied	
by	vascular	plant	species	is	strongly	constrained	by	trade-	offs	be-
tween traits. On the one hand, the leaf economics spectrum de-
scribes	a	productivity–	persistence	trade-	off	and	contrasts	species	
with	 a	 set	 of	 successful	 trait	 combinations	 for	 quick	 returns	 on	
investments of nutrients and dry mass in leaves to species with a 
slower	potential	rate	of	return	of	more	persistent	 leaves	(Wright	
et	al.,	2004).	On	the	other	hand,	the	size	spectrum	reflects	the	spe-
cies’ life cycle, with small stature species, smaller seeds and short 
lifespans	vs	long-	lived	woody	plants	(Díaz	et	al.,	2016;	Table	1).

In this study, we aimed at unravelling the relationships between 
traits (single traits or trait syndromes) and species distributions at 
broad spatial scale and abundances at local scale. Specifically, we fo-
cused on 20 traits that are expected to respond to bioclimatic drivers 
and	capture	the	essence	of	plant	life	forms	and	functions	(Wright	et	al.,	
2004;	Petchey	&	Gaston,	2006;	Díaz	et	 al.,	 2016;	Bruelheide	et	 al.,	
2018).	We	tested	for	these	relationships	across	456	European	herba-
ceous, dwarf shrub and shrub species by interrelating existing data on 
functional	traits	with	the	species’	(a)	geographic	range	size;	(b)	climatic	
niche	size;	and	(c)	 local	abundance,	which	was	measured	as	 (i)	mean	
cover from all the vegetation plots in which a species was present and 
(ii)	skewness	of	cover	values.	We	expected	climatic	niche	size	and	geo-
graphic	range	size	to	be	driven	by	the	same	underlying	environmental	
factors	and	ecological	processes	(Colwell	&	Rangel,	2009),	and	there-
fore to be positively correlated, and to be predicted by many of the 
same	single	 traits	or	 trait	syndromes	 (Table	1).	We	aimed	to	answer	

the	following	research	questions:	(a)	can	single	plant	functional	traits	
or sets of traits (trait syndromes) best explain the local abundance 
(i.e.	a	measure	of	commonness)	and	broad-	scale	distributions	of	plant	
species; and (b) do the specific traits and their relative contributions 
to species’ abundance and distribution differ between the local and 
broad spatial scales?

2  | METHODS

2.1 | Broad- scale distribution metrics: geographic 
range size and climatic niche size

We	used	available	digitized	species	distribution	data	(i.e.	range	poly-
gons	 and	 point	 occurrences)	 of	 the	 Chorological	 Database	 Halle	
(CDH;	E.	Welk	et	al.,	unpublished	data)	to	assess	the	Eurasian	geo-
graphic ranges of 456 herbaceous, dwarf shrub and shrub species, 
including	their	neophytic	occurrences.	A	list	of	these	species	can	be	
found	in	Appendix	S1.	 In	total,	CDH	stores	 information	on	species	
distribution ranges for more than 17,000 vascular plant species but 
expert-	drawn	 range	maps	were	 compiled	 for	5,583	 taxa	based	on	
national and floristic databases and maps from the floristic litera-
ture	(Tralau,	1969-	1981;	Lundquist	&	Nordenstam,	1988;	Lundquist,	
1992;	Lundquist	&	Jäger,	1995-	2007).	These	data	are	published	as	
distribution	range	maps	(Meusel	et	al.,	1965,	1978;	Meusel	&	Jäger,	
1992).	We	used	the	subset	of	these	species	that	met	the	criteria	de-
scribed	below.	Data	stored	 in	CDH	can	be	 requested	 for	 research	
objectives	via	choro	logie.biolo	gie.uni-	halle.de/choro/.

We	 aggregated	 species’	 point	 and	 polygon	 distribution	 data	
using	a	raster	grid	layer	of	2.5	arc-	min	resolution,	which	corresponds	
to	 grid	 cells	 covering	 approximately	 15	 km2 each across Central 
Europe.	As	a	measure	of	range	size	for	each	species,	we	counted	the	
number of grid cells occupied (approximating the area of occupancy 
in the geographical space).

We	determined	the	multi-	dimensional	climatic	space	(or	climatic	
niche) of each geographic range based on principal component 
analysis	 (PCA)	of	19	bioclimatic	variables	from	the	WorldClim	2.0	
database	(Fick	&	Hijmans,	2017),	also	at	2.5	arc-	min	resolution.	The	
resulting	global	background	climatic	space	was	well	represented	by	
the first two principal components, which accounted for 70.75% of 
the	total	climatic	variance.	The	two-	dimensional	PCA	space	was	ras-
terized	into	100	×	100	PCA	grid	cells,	considered	as	the	background	
climatic	niche,	as	explained	in	Appendix	S2.	The	species’	niche	size	
was	then	calculated	as	the	number	of	PCA	grid	cells	occupied	in	the	
climatic space (i.e., the area of occupancy in the bioclimatic niche 
space;	for	detailed	information	see	Appendix	S2).

2.2 | Local abundance metrics in vegetation plots: 
mean cover and skewness of cover values

As	a	measure	of	local	abundance,	percentage	cover	values	were	ob-
tained for each of the study species in 740,113 vegetation plots from 

http://chorologie.biologie.uni-halle.de/choro/
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the	European	Vegetation	Archive	(EVA;	Chytrý	et	al.,	2016),	queried	
in	October	2015.	Overall,	EVA	comprised	vegetation	plots	from	all	
European	countries	plus	Turkey,	Georgia,	Armenia,	Azerbaijan	and	
parts	 of	 Russia.	We	 included	 vegetation	 plots	 from	 all	 vegetation	
types	available	 from	EVA,	except	aquatic	vegetation.	We	matched	
synonymous species names according to the taxonomic reference 
list	 for	Germany	(German	SL	version	1.2,	Jansen	&	Dengler,	2008)	
and	 to	 four	 taxonomic	 reference	 lists	 available	 via	 the	 R	 pack-
age taxize	 (Chamberlain	 &	 Szöcs,	 2013;	 R	 Core	 Team,	 2018),	 i.e.	
Encyclopedia	of	Life	 (EOL),	 International	Plant	Names	Index	(IPNI),	
Integrated	 Taxonomic	 Information	 Service	 (ITIS)	 and	 Tropicos.	 In	
cases where no exact match was found, taxon names were resolved 
using	the	Taxonomic	Name	Resolution	Service	(TNRS)	and	all	names	
matched or converted from a synonym were considered accepted 
taxon	names	when	probabilities	were	≥95%.	We	merged	the	data	for	
subspecies at the species level following the taxonomic hierarchy 
in	TNRS.	The	 selected	 study	 species	occurred	within	 at	 least	100	
vegetation	plots	 in	 the	EVA	dataset.	Vegetation	plots	with	 a	 geo-
graphic	location	uncertainty	of	more	than	10	km	were	removed	prior	
to	this	selection.	The	median	occurrence	(i.e.	number	of	vegetation	

plots	 a	 species	 occurred	 in)	 per	 species	 was	 2,162	 (interquartile	
range	846	to	5,137).	Information	on	source	databases	that	provided	
vegetation-	plot	data	can	be	found	 in	Appendix	S3.	Cover	or	cover	
abundance values that were based on ordinal scales (e.g. Domin, 
1928;	Braun-	Blanquet,	1951)	were	 converted	 to	percentage	 cover	
(van	der	Maarel,	1979).

For each species, we measured two aspects of the species’ abun-
dance across the vegetation plots. First, we calculated its “mean 
cover”: the arithmetic mean of the percentage cover values from all 
the	vegetation	plots	at	2.5	arc-	min	raster	cells	in	which	the	species	
was	present	in	EVA.	Second,	we	evaluated	the	frequency	distribu-
tion of these percentage cover values (see Figure 1 for details on 
the procedure for three example species). For this, we computed the 
shape of the distribution function of the percentage cover values. In 
general,	those	values	are	not	normally,	exponentially	or	log-	normally	
distributed	(Figure	1a–	c);	thus,	we	developed	a	non-	parametric	ap-
proach	 for	measuring	 the	 shape	 of	 the	 distribution	 function.	 This	
was	achieved	by	calculating	the	distribution	quantiles	 in	5%	steps,	
resulting	in	20	quantile	values.	We	then	fitted	a	non-	linear	model	on	
those	20	quantile	values	and	obtained	the	estimate	and	the	credible	

F IGURE  1 Examples of distribution of species’ cover values from vegetation plots and calculated mean cover value for (a) Achillea nobilis, 
the species with the lowest mean cover value, (b) Atriplex portulacoides, a species with intermediate mean cover value and (c) Carex elongata, 
the	species	with	the	highest	mean	cover	value.	Note	the	log	scale	for	frequency.	Distribution	quantiles	from	species’	cover	values	were	
calculated	and	used	to	compute	the	shape	of	the	frequency	distribution	function	for	each	species,	respectively	(d–	f).	Non-	linear	models	on	
the	extracted	quantile	values	were	applied	to	calculate	the	area	under	the	histograms	of	cover	values	(AUH),	ranging	from	0	to	1,	with	values	
close	to	0	indicating	a	strongly	right-	skewed	distribution	whereas	values	close	to	1	point	to	a	strongly	left-	skewed	distribution	of	cover	
values
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interval	 of	 the	 area	 under	 the	 histogram	 (AUH)	 (Figure	 1d–	f).	We	
applied	 a	 Bayesian	 Markov	 chain	 Monte	 Carlo	 (MCMC)	 method	
following Feng et al. (2017), using an exponential distribution, 0.95 
confidence	level	and	10,000	iterations.	The	resulting	AUH	value	for	
a given species ranged from 0 to 1, with values lower or higher than 
0.5 meaning that the distribution of cover values for a focal species 
is	right-		or	left-	skewed,	respectively.	The	lower	the	AUH	value,	the	
higher was the rarity (i.e. the proportion of relatively low cover val-
ues).	 Thus,	 the	AUH	values	 are	 suitable	 as	 proxies	 for	 abundance	
structure	 across	 the	 vegetation	 plots.	 Hereafter,	 we	 refer	 to	 the	
AUH	values	as	“skewness	of	cover	values”	and	use	it	as	an	alterna-
tive	metric,	additional	to	mean	cover,	to	assess	across-	plot	species	
abundance.

2.3 | Explanatory variables: plant functional traits

We	 compiled	 a	 complete	 species	 trait	matrix	with	 20	 plant	 func-
tional	traits	(see	Table	2	and	Appendix	S1).	The	trait	matrix	included	
nine	binary	variables:	five	for	life	form	following	Raunkiaer	(1934);	
three	 for	 life	 cycle	 (derived	 from	 BiolFlor	 database;	 Kühn	 et	 al.,	
2004);	and	one	for	clonality	(derived	from	the	CLO-	PLA	database;	

Klimešová	et	al.,	2017).	We	included	information	on	11	continuous	
trait	variables	from	the	global	plant-	trait	database	TRY	(Kattge	et	al.,	
2020).	All	continuous	TRY	trait	values	were	derived	from	Bruelheide	
et	 al.	 (2018)	 who	 applied	 a	 gap-	filling	 approach	 with	 Bayesian	
Hierarchical	 Probabilistic	 Matrix	 Factorization	 (BHPMF;	 Schrodt	
et	al.,	2015)	to	fill	gaps	in	the	observed	species-	by-	trait	matrix	data	
received	from	TRY.	Continuous	trait	variables	were	ln-	transformed	
prior to analysis.

A	PCA	of	the	20	traits	included	in	this	study	was	generated	using	
the	package	 factoextra	 (Kassambara	&	Mundt,	 2017),	 allowing	 the	
visualization	 of	 the	 trait	 contributions	 (loadings)	 to	 the	 first	 and	
second	principal	 components	 (Figure	2).	 The	 first	 component	 cor-
responded to traits of life form (i.e. therophyte), life (i.e. annual and 
perennial)	and	clonal	growth	and	accounted	for	18.8%	of	the	total	
variation	 in	 trait	values.	The	second	component,	corresponding	 to	
leaf traits, accounted for 14.6% of the total variation in trait values. 
The	third	and	 fourth	components	corresponded	to	dispersal	 traits	
(i.e. seed mass and dispersal unit length) and life form (i.e. hemicryp-
tophyte)	and	accounted	for	11.4%	and	8.7%	of	the	total	variation	in	
trait	values,	 respectively.	The	mean	and	standard	deviation	of	ob-
served	trait	values	are	given	in	Table	2.	A	correlation	matrix	including	
the correlation coefficients of all pairwise trait combinations can be 

Trait Abbreviation Unit Mean SD

Leaf	area LeafArea mm2 2,128.74 6,346.69

Specific leaf area SLA m2/kg 23.30 8.99

Leaf	C	content LeafC mg/g 451.36 24.93

Leaf	N	content LeafN mg/g 24.59 7.61

Leaf	P	content LeafP mg/g 2.14 0.95

Leaf	dry	matter	
content

LDMC mg/g 0.22 0.08

Leaf	N:P	ratio LeafNPratio g/g 12.13 6.35

Plant height PlantHeight m 0.41 0.44

Seed mass SeedMass mg 2.36 4.59

Seed number per 
reproductive unit

SeedNumRepUnit 42,956.49 447,429.20

Dispersal unit length DispUnitLeng mm 3.18 2.29

Life	cycle	length

Annual Annual Proportion [%] 16.2 -	

Biennial Biennial Proportion [%] 9.4 -	

Perennial Perennial Proportion [%] 81.8 -	

Life	form -	

Phanerophyte Phaneroph Proportion [%] 5.0 -	

Chamaephyte Chamaeph Proportion [%] 6.1 -	

Hemicryptophyte Hemicrypt Proportion [%] 78.2 -	

Geophyte Geoph Proportion [%] 10.7 -	

Therophyte Theroph Proportion [%] 14.3 -	

Clonality -	

Clonal growth ClonalGrowth Proportion [%] 88.8 -	

TABLE  2 Traits,	abbreviations	of	trait	
names, units of measurement, and mean 
and standard deviation of observed trait 
values
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found	in	Appendix	S4.	The	values	of	trait	contributions	(loadings)	to	
all	PCA	axes	and	the	explained	variation	in	trait	values	are	also	given	
in	Appendix	S4.

2.4 | Statistical modelling: linking plant functional 
traits to mean cover values, skewness of cover values, 
geographic range size, and climatic niche size

We	used	the	function	phylo.maker	from	the	package	V. PhyloMaker	(Jin	
&	Qian,	2019)	to	create	a	phylogenetic	tree	of	the	studied	species.	The	
function	phylo4d	from	the	package	phylobase	(Hackathon	et	al.,	2013)	
was	 applied	 to	 link	 trait	 data	 to	 the	 species’	 phylogeny.	We	 applied	
Pagel’s	Lambda	statistic	 (Pagel,	1999)	and	Fritz	and	Purvis’	D	 (Fritz	&	
Purvis,	2010)	statistics	to	quantify	the	strength	of	phylogenetic	signal	
among the 456 studied species for each of the 20 studied trait vari-
ables.	Pagel’s	Lambda	statistic	revealed	a	strong	phylogenetic	signal	in	
all	 continuous	 trait	 variables.	Fritz	 and	Purvis’	D revealed a phyloge-
netic	 signal	 in	 all	 binary	 trait	 variables	 (see	Appendix	 S4).	 Therefore,	
we	ran	phylogenetic	generalized	 least-	squares	models	 (i.e.	a	phyloge-
netically	 corrected	model)	 using	 the	 function	 pgls	 from	 the	 package	
caper	(Orme	et	al.,	2018),	that	takes	into	account	the	phylogenetic	non-	
independence between species trait values when analysing the rela-
tionships	linking	plant	functional	traits	to	mean	cover	values,	skewness	
of	cover	values,	geographic	range	size,	and	climatic	niche	size.	We	also	
applied	phylogenetic	generalized	least-	squares	models	to	examine	the	
relationship	between	species’	geographic	range	size	and	climatic	niche	
size,	as	well	as	between	species’	mean	cover	values	and	skewness	of	
cover	values.	To	allow	fair	comparisons	of	the	magnitude	of	effect	sizes	
between	continuous	and	binary	trait	variables,	all	continuous	and	 ln-	
transformed	trait	variables	were	standardized	by	subtracting	the	mean	
and	 dividing	 by	 two	 standard	 deviations	 (Gelman,	 2008).	 The	 lasso	

procedure	in	function	glmnet	from	the	package	glmnet (Friedman et al., 
2010) was applied to extract those of the 20 trait variables that contrib-
uted	the	most	in	the	four	linear	models	(mean	cover	values,	skewness	
of	cover	values,	geographic	range	size,	and	climatic	niche	size	being	the	
four	 studied	 response	variables).	The	minimum	 lambda	 ratio	value	 in	
each of the four linear models was 0.005, 0.0005, 0.0001 and 0.01 for 
mean	cover	values,	skewness	of	cover	values,	geographic	range	size	and	
climatic	niche	size,	respectively	(see	Appendix	S4	for	the	predictor	vari-
ables	included	in	the	models).	To	test	the	effect	of	trait	combinations	
and interactions for each of the four response variables, we then tested 
all possible combinations of the predictor variables that contributed the 
most,	 including	their	 two-	way	 interaction	terms,	applying	the	dredge	
function from the MuMIn	 package	 (Barton,	 2019).	We	 allowed	 for	 a	
maximum of three predictor terms to be included in a given candidate 
model (m.max = 3); with this, univariate models were applied for sin-
gle	traits	and	multivariate	models	for	trait	combinations	(see	Appendix	
S4 for the lists of candidate models for the four response variables). 
Finally,	the	Akaike	Information	Criterion	(AIC),	with	∆AIC	< 2 was used 
to identify the most parsimonious candidate model with a maximum of 
three predictor terms for each of the four studied response variables. 
We	computed	the	variance	inflation	factor	(VIF)	for	each	predictor	term	
in	the	most	parsimonious	models	to	check	for	potential	multicollinearity	
issues among the continuous predictor variables, using the function vif 
from	the	package	car	(Fox	&	Weisberg,	2019).

As	a	complementary	analysis,	we	ran	another	set	of	phylogenetic	
generalized	least-	squares	models	but	using	principal	components	(PCs)	
from	the	PCA	on	 the	 trait	 space	as	explanatory	variables	 instead	of	
using the original set of trait variables. Because PCs represent uncor-
related dimensions of trait values, this analysis provides an alterna-
tive approach to test for trait syndromes on species’ local abundance 
and	 distribution	 patterns.	We	 used	 all	 the	 species	 scores	 on	 all	 20	
PCs as predictor terms in the models described above and tested for 

F IGURE  2 Principal component 
analysis of the 20 traits included in 
this study. Colour represents the trait 
contributions	(%)	to	the	PCA	(first	and	
second	components).	The	first	and	second	
components	accounted	for	18.8%	and	
14.6% of the total variation in trait values, 
respectively. For abbreviation of the trait 
names	see	Table	2
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combinations and interactions between PCs in the same way as de-
scribed for traits. By applying the dredge function we tested all possi-
ble combinations of the predictor variables that contributed the most, 
including	two-	way	interaction	between	PCs,	for	each	of	the	four	re-
sponse	variables.	AIC	with	∆AIC	< 2 was used to identify the most par-
simonious candidate model with a maximum of three predictor terms 
for	each	of	the	four	studied	response	variables	(see	Appendix	S4	for	
the trait contributions [loadings] to all 20 PCs).

3  | RESULTS

3.1 | Broad- scale distribution metrics: geographic 
range size and climatic niche size

Species’	 range	 size	 (number	 of	 occupied	 grid	 cells	 in	 geographical	
space) ranged from 1,947 in Dactylorhiza sambucina	 to	782,025	 in	
Stellaria media	with	 a	median	 range	 size	 of	 310,070	 cells.	 Species’	
climatic	niche	size	(number	of	occupied	PCA	grid	cells	within	the	cli-
matic niche space) ranged from 162 in Scabiosa canescens	to	9,318	in	
Plantago major	with	a	median	of	3,236	cells.	We	found	a	positive	re-
lationship	between	species’	geographic	range	and	climatic	niche	size	
(R2 = 0.605, p-	value	< 0.001 in a phylogenetically corrected model; 
Appendix	S4).

3.2 | Local abundance metrics: mean cover and 
skewness of cover values

Species’ mean cover from all the vegetation plots in which a species 
was present ranged from 2.4% for Achillea nobilis	to	24.8%	for	Carex 

elongata	 (Figure	1a	and	c).	 The	 interquartile	 range	of	was	4.6%	 to	
8.1%	and	the	median	was	5.9%.	Species’	skewness	of	cover	values	
ranged	from	0.081	(strongly	right-	skewed	distribution	of	low	cover	
values) in Achillea nobilis	to	0.385	in	Atriplex portulacoides (Figure 1d 
and	 e).	 The	 interquartile	 range	 was	 0.158–	0.226	 and	 the	 median	
was	 0.180.	 Species’	mean	 cover	was	 positively	 related	 to	 species’	
skewness	 of	 cover	 values	 in	 a	 phylogenetically	 corrected	 model	
(R2 = 0.763, p-	value	<	0.001;	Appendix	S4).

3.3 | The contribution of functional traits to 
explaining values and skewness of cover values

All	response	variables	were	better	explained	by	trait	combinations	
than by single traits, e.g. among the list of candidate models for 
mean cover as response variable, the best univariate model with 
plant	height	as	predictor	variable	was	ranked	17	(see	Appendix	S4).	
SLA	was	the	strongest	predictor	for	all	response	variables;	with	spe-
cies	with	high	SLA	having	larger	range	sizes,	broader	climatic	niche	
sizes,	and	higher	local	abundances.	For	each	specific	response	vari-
able,	SLA	interacted	with	other	traits	to	give	scale-	specific	and	dif-
ferent	trait	responses.	Specifically,	geographic	range	size	was	larger	
in	 species	with	 taller	 stature	and	 lower	 leaf	N:P	 ratio.	 In	 contrast,	
climatic	niche	size	was	larger	 in	species	that	had	lower	 leaf	C	con-
tent.	 The	 mentioned	 functional	 traits	 were	 significantly,	 though	
not	strongly	related	to	species’	geographic	 range	size	 (R2 = 0.090, 
p-	value	<	0.001)	and	climatic	niche	size	(R2 = 0.069, p-	value	< 0.001) 
in	 the	 phylogenetic	 generalized	 least-	squares	 models	 (Table	 3,	
Figure	3a	and	b).	Species’	mean	cover	and	the	skewness	of	cover	val-
ues	was	higher	in	species	with	higher	SLA	value	and	with	higher	leaf	
area	values.	The	interaction	of	the	variables	SLA	and	leaf	area	was	

Response 
variable

Multiple R2; 
p- value

Predictor terms 
entered in model

Regression 
coefficient p- value VIF

Geographic 
range	size

0.090; <0.001 SLA	(m2/kg) 0.213 <0.001 1.015

Plant height (m) 0.140 <0.01 1.014

Leaf	N:P	ratio	(g/g) −0.140 <0.01 1.020

Climatic 
niche	size

0.069; <0.001 SLA	(m2/kg) 0.181 <0.001 1.063

Leaf	C	(mg/g) −0.126 <0.01 1.043

Therophyte 0.108 0.096 1.024

Mean	cover 0.211; <0.001 SLA	(m2/kg) 2.146 <0.001 1.066

Leaf	area	(mm2) 1.417 <0.001 1.076

Leaf	area	(mm2)	*	SLA	
(m2/kg)

1.722 <0.001 1.041

Skewness	of	
cover values

0.169; <0.001 SLA	(m2/kg) 0.033 <0.001 1.066

Leaf	area	(mm2) 0.025 <0.001 1.076

Leaf	area	(mm2)	*	SLA	
(m2/kg)

0.030 <0.001 1.041

Note: Akaike	Information	Criterion	(AIC)	was	used	to	identify	the	most	parsimonious	model	for	
each of the four response variables. Interaction terms are indicated by *. Computed variance 
inflation	factor	(VIF)	for	each	predictor	variable	was	low,	indicating	that	the	predictors	were	not	
correlated with each other.

TABLE  3 Effects of species traits on 
species	geographic	range	size,	climatic	
niche	size,	mean	cover	and	skewness	of	
cover values
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positive and these functional traits were significantly related to both 
species mean cover (R2 = 0.211, p-	value	<	0.001)	and	the	AUH	meas-
ure	of	 the	skewness	of	cover	values	 (R2 = 0.169, p-	value	< 0.001; 
Table	3,	Figure	4a	and	b).

The	specific	traits	identified	in	the	final	multivariate	models	for	
the four response variables had also high loadings on the PCs that 
were	 identified	 as	 important	 predictors	 in	 the	 multivariate	 PCA-	
based	 models	 (see	 Appendix	 S4	 for	 the	 trait	 contributions	 [load-
ings] for all 20 PCs). In addition, the axes captured some more traits 
with maximum absolute loadings that were not selected in the final 
trait-	based	models,	such	as	leaf	area	for	geographic	range	size,	leaf	
P	content	for	climatic	niche	size,	clonal	growth	for	mean	cover	and	
leaf	area	for	the	skewness	of	cover	values.	However,	for	each	of	the	
four response variables, the three PCs in the final models explained 
less	 variation	 than	 the	 trait-	based	 models:	 geographic	 range	 size	
(R2 = 0.063, p-	value	<	 0.001;	 in	 the	 sequence	of	 importance,	 the	
model	included	PCs	12,	2	and	1),	climatic	niche	size	(R2 = 0.069, p-	
value < 0.001; based on PCs 1, 12 and 19), mean cover (R2 = 0.123, 
p-	value	<	0.001;	based	on	PCs	13,	2	and	4)	and	skewness	of	cover	
values (R2 = 0.094, p-	value	< 0.001; based on PCs 6, 2 and 4).

4  | DISCUSSION

Species’ local abundances (i.e. a measure of commonness) were 
more	strongly	related	to	traits	than	were	species’	broad-	scale	distri-
bution	patterns	in	the	geographic	and	climatic	space.	This	indicates	

that plant traits better capture local processes acting at the commu-
nity	level	(such	as	biotic	processes)	than	broad-	scale	macroecologi-
cal	 processes.	Both	 local	 abundances	 and	broad-	scale	distribution	
patterns were better predicted by combinations of traits than by 
single traits.

Specific leaf area had a significant positive effect and explained 
most of the observed variation in all four models predicting species’ 
local	abundance	and	broad-	scale	distribution	patterns.	SLA	is	a	pro-
ductivity-		and	competitive	ability-	related	trait,	that	reflects	species	
strategies	for	rapid	acquisition	of	resources,	with	higher	SLA	values	
allowing a species to capture more light for a given biomass invest-
ment	 in	 leaves,	for	example	(Díaz	et	al.,	2004;	Wright	et	al.,	2004;	
Mariotte,	2014).	In	line	with	our	findings,	several	studies	state	com-
mon	species	 to	be	associated	with	higher	SLA	 (Grime	et	al.,	1997;	
Díaz	et	al.,	2004;	Mariotte,	2014;	Lachaise	et	al.,	2020).	While	spe-
cies’ local abundances were best predicted by the interaction be-
tween	 leaf	 area	 and	 SLA,	 reflecting	 the	 leaf	 economics	 spectrum	
trait	 syndrome	 (Díaz	et	al.,	2004),	broad-	scale	distribution	metrics	
were	best	predicted	by	different	combinations	of	traits.	While	geo-
graphic	 range	 size	 increased	with	 increasing	 plant	 height,	 climatic	
niche	size	decreased	with	increasing	leaf	carbon	content,	and	both	
increased	with	increasing	SLA.

At	the	local	scale,	leaf	area	showed	a	significantly	positive	effect	
on	 species	 abundance.	 This	 result	 offers	 a	 functional	 explanation	
that species with larger leaves, allowing better light capture, are able 
to attain higher local abundances than species with smaller leaves 
(Mariotte,	2014).	Moreover,	 leaf	area	was	particularly	 important	 in	

F IGURE  3 Scatter	plot	of	observed	values	and	regression	lines	from	phylogenetic	generalized	least-	squares	models,	showing	the	effects	
of	the	three	most	predictive	terms	on	species’	(a)	geographic	range	size	and	(b)	climatic	niche	size.	For	geographic	range	size,	coloured	and	
dashed	lines	represent	the	5th,	50th	and	95th	percentile	in	values	for	plant	height	and	leaf	N:P	ratio,	respectively;	for	climatic	niche	size,	
coloured	lines,	solid	and	dotted,	represent	the	5th,	50th	and	95th	percentile	in	leaf	C	content	values	for	therophytic	and	non-	therophytic	
species, respectively
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interaction	with	SLA	values,	as	species’	local	abundance	was	higher	
in	species	with	large	leaves	and	high	SLA	values.	Like	SLA,	leaf	area	is	
interpreted as a trait that is positively related to species’ productivity 
and	competitive	ability	(Diaz	et	al.,	2004;	Wright	et	al.,	2004).	This	
indicates that being nearer the “fast” end of the leaf economics spec-
trum (i.e. trait syndrome) tends to increase local abundance. In con-
trast, the ability to grow clonally was not selected in any of the final 
models	 based	on	original	 trait	 variables.	 The	 ability	 of	 species	 for	
clonal	growth	plays	an	important	role	both	in	short-	distance	spread	
and in persistence within habitats (Benot et al., 2013) and previous 
studies found clonality to be positively associated with local abun-
dance	(Eriksson	&	Jakobsson,	1998;	Kolb	et	al.,	2006).	Accordingly,	
this	 trait	had	high	axis	 loadings	 in	 the	PC-	based	model	with	mean	
cover	value	as	response	variable.	The	absence	of	clonal	growth	from	
our final models based on original trait values is probably due to its 
negative	correlation	with	SLA	in	our	set	of	species.

At	large	spatial	extent,	geographic	range	size	of	species	was	posi-
tively related to plant height (i.e. with taller species being more wide-
spread).	High	stature	is	known	to	have	a	competitive	advantage	and	
to be associated with common species. Greater plant height of widely 
distributed species suggests that these species may have higher com-
petitive	ability	for	space	and	light	than	narrowly	distributed	species.	A	
similar positive correlation between plant height and geographic range 
size	was	found	for	herbaceous	species	 in	 the	French	Mediterranean	
region	 (Lavergne	 et	 al.,	 2004)	 and	 in	 temperate	 forests	 in	Germany	
(Kolb	et	al.,	2006).	We	found	leaf	N:P	ratio	to	be	negatively	correlated	
with	 geographic	 range	 size.	 Nitrogen	 (N)	 and	 phosphorus	 (P)	 avail-
ability	can	limit	plant	growth	in	terrestrial	ecosystems,	and	N:P	ratios	
are	on	average	higher	in	stress-	tolerant	species	compared	to	ruderals	

(Güsewell,	2004).	Ruderal	species	are	characterized	by	rapid	growth	
and	they	establish	much	quicker	and	thrive	better	in	disturbed	habi-
tats	than	stress-	tolerant	and	competitor	species	(Grime,	1979;	Wright	
et	 al.,	 2004;	Guo	 et	 al.,	 2018)	 and	 generally	 undergo	 long-	distance	
dispersal	(Baker,	1965).	Thus,	a	plausible	explanation	is	that	ruderal-
ity	has	a	positive	effect	on	species’	geographic	range	size.	As	shown	
in	 a	 global	 study	 by	Bruelheide	 et	 al.	 (2018),	 species’	 leaf	N:P	 ratio	
declines	at	higher	latitudes.	Many	species	primarily	found	in	boreal	re-
gions	obtain	broader	geographic	range	sizes	in	comparison	to	species	
mainly	found	further	south	(e.g.	in	Mediterranean	regions),	presumably	
because	of	post-	glacial	re-	expansion.	This	might	be	another	plausible	
explanation for the negative relationship between geographic range 
size	and	leaf	N:P	ratio	in	our	study.

In our study, the distribution range in climatic space was larger in 
species	with	lower	leaf	carbon	content,	even	when	accounting	for	SLA.	
In	general,	carbon	content	is	expected	to	be	negatively	related	to	SLA	
(Reich, 2014), but both traits seem to explain independent variation 
in	 climatic	niche	 size.	This	was	brought	about	by	 species	with	broad	
climatic	 niche	 sizes,	 for	which	 SLA	 alone	was	 a	 poor	 predictor,	 such	
as species with a tendency to succulence (e.g. Plantago major), which 
have	leaves	with	low	SLA	but	yet	low	leaf	carbon	content.	This	indicates	
that species following a “fast” strategy, according to the leaf econom-
ics	spectrum,	are	better	adapted	to	obtain	broad	climatic	niche	sizes.	
Species with a therophytic life form (i.e. annual plants that overwinter 
as a seed) did show marginally greater climatic tolerance (i.e. broader 
climatic	niche	 size).	A	 short	 generation	 time	 is	 a	 selective	 advantage	
to	annuals	over	biennials	and	perennials	 (Pysek	&	Richardson,	2007),	
with annual species being capable of faster reproduction and spread 
by seeds than perennials, e.g. many weed species are annual ruderal 

F IGURE  4 Scatter	plot	of	observed	values	and	regression	lines	from	phylogenetic	generalized	least-	squares	models,	showing	the	effects	
of	the	relevant	species	traits	on	species’	local	abundance.	Plots	show	the	effect	of	the	interaction	between	leaf	area	and	SLA	on	(c)	mean	
cover	and	(d)	skewness	of	cover	values.	Coloured	lines	represent	the	5th,	50th	and	95th	percentile	in	values	for	leaf	area
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species	 that	generally	undergo	 long-	distance	dispersal	 (Baker,	1965).	
Finally, traits related to dispersal, regeneration and persistence were 
not	significantly	correlated	with	local	abundance	or	broad-	scale	distri-
bution	in	our	models.	These	results	confirm	previous	studies	that	found	
no	significant	relationship	between	species’	abundance	or	broad-	scale	
distribution	and	seed	mass	(Thompson	et	al.,	1999;	Leishman	&	Murray,	
2001;	Lavergne	et	al.,	2004)	or	life	cycle	length	(Kolb	et	al.,	2006).

Our results largely confirm trends previously reported about the 
existing association between species’ geographic range and climatic 
niche	size,	with	widely	distributed	species	also	having	broad	climatic	
tolerances and geographically narrowly distributed species also nar-
rowly distributed in climatic space (Gaston, 2000; Slatyer et al., 2013; 
Cardillo	et	al.,	2019).	We	found	an	overall	right-	skewed	distribution	in	
cover values for most of the studied species, with species exhibiting 
low cover at most sites and high cover in only a few sites across their 
distribution	range.	The	species	mean	cover	values	were	positively	re-
lated	to	the	skewness	of	cover	values.	Therefore,	for	our	species	set,	
we	consider	the	measure	of	skewness,	calculated	as	the	AUH,	a	robust	
tool to capture both the mean and the variability of cover values across 
a species' whole distribution range.

Nevertheless,	single	plant	traits	and	trait	syndromes	only	weakly	
explained	 the	 total	observed	variation	 in	 species’	broad-	scale	distri-
bution	metrics.	We	see	two	plausible	explanations	for	the	weak	pre-
dictive	power	of	functional	traits	on	species’	broad-	scale	distribution	
metrics.

First, our study was carried out on the species’ whole Eurasian 
distribution range, which includes a wide range of habitat types and 
bioclimatic	zones.	Species	functional	traits	are	expected	to	be	related	
to those environmental conditions under which the species occurs 
(Lavorel	&	Garnier,	2002;	McGill	et	al.,	2006).	With	this,	both	widely	
distributed and geographically restricted species might be character-
ized	by	the	same	traits	in	different	habitats,	vegetation	types	or	geo-
graphic	 regions,	depending	on	 the	 local	 conditions	 (Aerts	&	Chapin,	
2000).	Therefore,	future	studies	should	incorporate	habitat	variability,	
by means of comparisons among single habitat types (e.g. by applying 
EUNIS	habitat	classification;	Chytrý	et	al.,	2020),	and	test	for	consis-
tency of the role of traits for patterns of species commonness at dif-
ferent spatial scales.

Second, in this study, we used mean trait values derived from 
trait databases. Several studies have provided evidence that func-
tional	 traits	 express	 not	 only	 species-	specific	 characteristics,	 but	
also	 intraspecific	 variability	 in	 leaf	 traits	 (Reich	 &	Oleksyn,	 2004;	
Albert	et	al.,	2011;	Moles	et	al.,	2014;	Niinemets,	2015;	Wright	et	al.,	
2017).	This	intraspecific	trait	variation	may	influence	the	interactions	
among and between species and their environment and, therefore, 
might	 influence	 species	 performance	 (Bolnick	 et	 al.,	 2003;	 Siefert	
et	al.,	2015).	Therefore,	we	encourage	future	studies	to	include	in-
traspecific trait variation in addition to mean values for species traits 
when investigating studies over large geographic scales.
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