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1  | INTRODUCTION

A central aim in functional macroecology is to understand to what de-
gree plant morphological and physiological traits (Violle et al., 2007) 
affect species’ distributions at large spatial scales (i.e. occurrences 

across the geographic and climatic space), as well as local abun-
dances within communities (Brown, 1995; McGill et al., 2006). The 
limits of species’ broad-scale distributions reflect the interplay be-
tween dispersal barriers and bioclimatic conditions that affect range 
dynamics and evolution (Baselga et al., 2012). In contrast, species’ 
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Abstract
Aim: Plant functional traits summarize the main variability in plant form and function 
across taxa and biomes. We assess whether geographic range size, climatic niche size, 
and local abundance of plants can be predicted by sets of traits (trait syndromes) or 
are driven by single traits.
Location: Eurasia.
Methods: Species distribution maps were extracted from the Chorological Database 
Halle to derive information on the geographic range size and climatic niche size for 
456 herbaceous, dwarf shrub and shrub species. We estimated local species abun-
dances based on 740,113 vegetation plots from the European Vegetation Archive, 
where abundances were available as plant species cover per plot. We compiled a com-
plete species-by-trait matrix of 20 plant functional traits from trait databases (TRY, 
BiolFlor and CLO-PLA). The relationships of species’ geographic range size, climatic 
niche size and local abundance with single traits and trait syndromes were tested with 
multiple linear regression models.
Results: Generally, traits were more strongly related to local abundances than to 
broad-scale species distribution patterns in geographic and climatic space (range and 
niche size), but both were better predicted by trait combinations than by single traits. 
Local abundance increased with leaf area and specific leaf area (SLA). Geographic 
range size and climatic niche size both increased with SLA. While range size increased 
with plant height, niche size decreased with leaf carbon content.
Conclusion: Functional traits matter for species’ abundance and distribution at both 
local and broad geographic scale. Local abundances are associated with different 
combinations of traits as compared to broad-scale distributions, pointing to filter-
ing by different environmental and ecological factors acting at distinct spatial scales. 
However, traits related to the leaf economics spectrum were important for species’ 
abundance and occurrence at both spatial scales. This finding emphasizes the general 
importance of resource acquisition strategies for the abundance and distribution of 
herbaceous, dwarf shrub and shrub species.

K E Y W O R D S

chorological database Halle (CDH), climatic niche, commonness and rarity, European 
Vegetation Archive (EVA), functional traits, geographic range, macroecology, vegetation-plot 
data
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local abundance depends on factors operating at the local scale of 
species assemblages, such as habitat suitability, the local combina-
tion of environmental conditions, and biotic interactions (Peterson 
et al., 2011; Staniczenko et al., 2017). Under the assumption that 
species’ functional traits reflect the mechanisms through which 
species respond to abiotic and biotic conditions to maximize their 
fitness, these traits are expected to predict both broad-scale distri-
bution and local abundances (Suding et al., 2008; Heino & Tolonen, 
2018).

Species can be rare or common (i.e. less or more abundant) 
within a local plant community. Similarly, some species have 
restricted distribution ranges while others are geographically 
widely distributed (Rabinowitz, 1981; Gurevitch et al., 2002; 
Enquist et al., 2019). It has been observed that species with larger 
geographic range sizes tend to have broader environmental toler-
ances (i.e. broader climatic niches), while geographically narrowly 
distributed species are also more likely to be narrowly distributed 
in climatic space (Slatyer et al., 2013; Sporbert et al., 2020). A 
positive relationship between climatic niche size and geographic 
range size across species thus seems to be a general macroeco-
logical pattern (Gaston, 2000; Slatyer et al., 2013; Cardillo et al., 
2019). A species’ local abundance results from population growth 
and demographical performance (Peterson et al., 2011). Within 
the geographic distribution range of a species, its local abundance 
at the community level is often highly variable. At the local scale, 
species abundance values are frequently used as descriptors of 
species performance and are an important characteristic of the 
composition of herbaceous plant communities (Kent and Coker, 
1992; Chiarucci et al., 1999). In general, locally rare species tend 
to have a sparse cover in plant communities (Murray & Lepschi, 
2004). Thus, potentially, local cover could also be considered a 
proxy for local rarity or commonness. However, local cover is in 
general low at most sites and high at only a few sites across a 
species’ distribution range (Murphy et al., 2006). In contrast to 

“everywhere sparse” species, these “somewhere abundant” spe-
cies are reflected in right-skewed species abundance distribu-
tions, a common pattern in plant community ecology (McNellie 
et al., 2019). This skewness in local abundance might be caused by 
the distribution of optimal ecological conditions, and thus, might 
be causally linked to functional traits. As mean abundance across 
the species range itself does not capture the full variability of 
skewed frequency distributions, it should be considered together 
with the skewness of a species’ cover value across its distribution 
range as proxies for rarity or commonness.

Functional traits have been used as proxies for species’ disper-
sal abilities (Greene and Johnson 1993; Thompson et al., 2011), 
environmental tolerances (Loehle, 1998; Bohner & Diez, 2020) or 
competitiveness (Kunstler et al., 2016). Specific functional traits 
have been linked to commonness and rarity on both local and large 
scales (see Table 1). For example, studies have found plant height, 
used as a proxy for competitive ability, to be positively correlated 
with range size, with taller species more widespread than shorter 
ones (Lavergne et al., 2004; Kolb et al., 2006). Similarly, on the local 
scale, common (i.e. more abundant) species have been associated 
with taller stature and with other traits that are proxies for species’ 
physiological activity and productivity, including larger specific leaf 
area (SLA) and higher leaf nitrogen (N) content (Grime et al., 1997; 
Hegde & Ellstrand, 1999; Lavergne et al., 2004; Mariotte, 2014; 
Lachaise et al., 2020). Nitrogen (N) and phosphorus (P) availabilities 
limit plant growth in most terrestrial ecosystems (Güsewell, 2004). 
Low nutrient availability (e.g. phosphorus limitation) may weaken 
the relationship between productivity-related traits and macrocli-
mate (Bruelheide et al., 2018). As a consequence, there might be 
a negative correlation between species’ N:P ratio and both their 
local abundance and broad-scale distribution. Regarding species’ 
persistence, locally more abundant species have been associated 
with perennial life cycle and clonal growth (Eriksson & Jakobsson, 
1998; Kolb et al., 2006). In contrast, at large spatial scales, rare 

TABLE  1 Traits used in this study, their function in the community, and their reported correlation with local abundance and broad-scale 
distribution being unimodal (─), positive (↑) or negative (↓)

Trait Function

Reported correlation with

Local abundance Broad-scale distribution

Specific leaf area, leaf C, leaf N, leaf P, 
leaf dry matter content

Productivity, competitive ability, 
leaf economics spectrum

Specific leaf area ↑1 ,  ─3 , 
leaf N ↑1 

Specific leaf area ─2 , ↑3 , leaf N ─2 , 
leaf dry matter content ─2 

Leaf N:P ratio Nutrient supply ↓4,15  ↓4,15 

Plant height, leaf area Competitive ability Plant height ↑1,2,5,6 , leaf 
area ↑1 

Plant height ─7 , ↑2,8 

Seed mass, seed number per 
reproductive unit, dispersal unit 
length

Dispersal, regeneration Seed mass ─7,8,14 , ↓14 , seed 
number per reproductive 
unit ↓4,8 

Seed mass ─2,10 , ↑8 , ↓11,12 , seed 
number per reproductive unit ↑2,8,9 

Life cycle, life form, clonality Persistence Perennials ↑7,8 , clonal 
growth ↑7,8 

Annuals ─8 , perennials ─8 , 
therophytes ↑8 , phanerophytes 
↓8 , clonal growth ─7 , ↓7 

1Mariotte (2014); 2Lavergne et al. (2004); 3Lachaise et al. (2020); 4Bruelheide et al. (2018); 5Hedge & Ellstrand (1999); 6Grime et al. (1997); 7Eriksson 
& Jakobsson (1998); 8Kolb et al. (2006); 9Van der Veken et al. (2007); 10Thompson et al. (1999); 11Guo et al. (2000); 12Oakwood et al. (1993); 13Kelly & 
Woodward (1996); 14Leishman & Murray (2001); 15Güsewell (2004).
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species have been associated with prevailing clonal growth (Kelly 
& Woodward, 1996) and woodiness (Oakwood et al., 1993). 
Several studies have investigated the relationships linking disper-
sal or regeneration-related traits with species’ local abundance and 
broad-scale distribution patterns. On the local scale, more abun-
dant species were found to produce fewer and lighter seeds than 
rare species (Hedge & Ellstrand, 1999; Guo et al., 2000; Kolb et al., 
2006). In contrast, at large spatial scales, geographically widespread 
species have been found to produce significantly more and heavier 
seeds than small-ranged plant species (Lavergne et al., 2004; Kolb 
et al., 2006; Van der Veken et al., 2007).

While some studies have found relationships between func-
tional traits and local abundance and/or broad-scale distribution 
patterns, others have failed to detect a clear correlation (see 
Table  1). So far, the majority of studies have focused on single 
traits rather than on trait combinations or trait syndromes (but 
see Díaz et al., 2016; Guo et al., 2018) as predictors of large and 
local distribution patterns. However, no single trait can completely 
describe a species’ ecological strategy (Winemiller et al., 2015; 
Marino et al., 2020). Rather, species’ local abundance and broad-
scale distribution patterns might be affected by different sets of 
traits (Marino et al., 2020). It has been suggested that locally rare 
and geographically restricted plant species differ systematically 
from more common species in functional traits that are related 
to species’ productivity, competitive ability, dispersal, regenera-
tion and persistence (Murray et al., 2002). However, the different 
states and values of traits cannot be unconditionally combined. 
Díaz et al. (2004) highlighted that the functional space occupied 
by vascular plant species is strongly constrained by trade-offs be-
tween traits. On the one hand, the leaf economics spectrum de-
scribes a productivity–persistence trade-off and contrasts species 
with a set of successful trait combinations for quick returns on 
investments of nutrients and dry mass in leaves to species with a 
slower potential rate of return of more persistent leaves (Wright 
et al., 2004). On the other hand, the size spectrum reflects the spe-
cies’ life cycle, with small stature species, smaller seeds and short 
lifespans vs long-lived woody plants (Díaz et al., 2016; Table 1).

In this study, we aimed at unravelling the relationships between 
traits (single traits or trait syndromes) and species distributions at 
broad spatial scale and abundances at local scale. Specifically, we fo-
cused on 20 traits that are expected to respond to bioclimatic drivers 
and capture the essence of plant life forms and functions (Wright et al., 
2004; Petchey & Gaston, 2006; Díaz et al., 2016; Bruelheide et al., 
2018). We tested for these relationships across 456 European herba-
ceous, dwarf shrub and shrub species by interrelating existing data on 
functional traits with the species’ (a) geographic range size; (b) climatic 
niche size; and (c) local abundance, which was measured as (i) mean 
cover from all the vegetation plots in which a species was present and 
(ii) skewness of cover values. We expected climatic niche size and geo-
graphic range size to be driven by the same underlying environmental 
factors and ecological processes (Colwell & Rangel, 2009), and there-
fore to be positively correlated, and to be predicted by many of the 
same single traits or trait syndromes (Table 1). We aimed to answer 

the following research questions: (a) can single plant functional traits 
or sets of traits (trait syndromes) best explain the local abundance 
(i.e. a measure of commonness) and broad-scale distributions of plant 
species; and (b) do the specific traits and their relative contributions 
to species’ abundance and distribution differ between the local and 
broad spatial scales?

2  | METHODS

2.1 | Broad-scale distribution metrics: geographic 
range size and climatic niche size

We used available digitized species distribution data (i.e. range poly-
gons and point occurrences) of the Chorological Database Halle 
(CDH; E. Welk et al., unpublished data) to assess the Eurasian geo-
graphic ranges of 456 herbaceous, dwarf shrub and shrub species, 
including their neophytic occurrences. A list of these species can be 
found in Appendix S1. In total, CDH stores information on species 
distribution ranges for more than 17,000 vascular plant species but 
expert-drawn range maps were compiled for 5,583 taxa based on 
national and floristic databases and maps from the floristic litera-
ture (Tralau, 1969-1981; Lundquist & Nordenstam, 1988; Lundquist, 
1992; Lundquist & Jäger, 1995-2007). These data are published as 
distribution range maps (Meusel et al., 1965, 1978; Meusel & Jäger, 
1992). We used the subset of these species that met the criteria de-
scribed below. Data stored in CDH can be requested for research 
objectives via choro​logie.biolo​gie.uni-halle.de/choro/.

We aggregated species’ point and polygon distribution data 
using a raster grid layer of 2.5 arc-min resolution, which corresponds 
to grid cells covering approximately 15 km2 each across Central 
Europe. As a measure of range size for each species, we counted the 
number of grid cells occupied (approximating the area of occupancy 
in the geographical space).

We determined the multi-dimensional climatic space (or climatic 
niche) of each geographic range based on principal component 
analysis (PCA) of 19 bioclimatic variables from the WorldClim 2.0 
database (Fick & Hijmans, 2017), also at 2.5 arc-min resolution. The 
resulting global background climatic space was well represented by 
the first two principal components, which accounted for 70.75% of 
the total climatic variance. The two-dimensional PCA space was ras-
terized into 100 × 100 PCA grid cells, considered as the background 
climatic niche, as explained in Appendix S2. The species’ niche size 
was then calculated as the number of PCA grid cells occupied in the 
climatic space (i.e., the area of occupancy in the bioclimatic niche 
space; for detailed information see Appendix S2).

2.2 | Local abundance metrics in vegetation plots: 
mean cover and skewness of cover values

As a measure of local abundance, percentage cover values were ob-
tained for each of the study species in 740,113 vegetation plots from 

http://chorologie.biologie.uni-halle.de/choro/
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the European Vegetation Archive (EVA; Chytrý et al., 2016), queried 
in October 2015. Overall, EVA comprised vegetation plots from all 
European countries plus Turkey, Georgia, Armenia, Azerbaijan and 
parts of Russia. We included vegetation plots from all vegetation 
types available from EVA, except aquatic vegetation. We matched 
synonymous species names according to the taxonomic reference 
list for Germany (German SL version 1.2, Jansen & Dengler, 2008) 
and to four taxonomic reference lists available via the R pack-
age taxize (Chamberlain & Szöcs, 2013; R Core Team, 2018), i.e. 
Encyclopedia of Life (EOL), International Plant Names Index (IPNI), 
Integrated Taxonomic Information Service (ITIS) and Tropicos. In 
cases where no exact match was found, taxon names were resolved 
using the Taxonomic Name Resolution Service (TNRS) and all names 
matched or converted from a synonym were considered accepted 
taxon names when probabilities were ≥95%. We merged the data for 
subspecies at the species level following the taxonomic hierarchy 
in TNRS. The selected study species occurred within at least 100 
vegetation plots in the EVA dataset. Vegetation plots with a geo-
graphic location uncertainty of more than 10 km were removed prior 
to this selection. The median occurrence (i.e. number of vegetation 

plots a species occurred in) per species was 2,162 (interquartile 
range 846 to 5,137). Information on source databases that provided 
vegetation-plot data can be found in Appendix S3. Cover or cover 
abundance values that were based on ordinal scales (e.g. Domin, 
1928; Braun-Blanquet, 1951) were converted to percentage cover 
(van der Maarel, 1979).

For each species, we measured two aspects of the species’ abun-
dance across the vegetation plots. First, we calculated its “mean 
cover”: the arithmetic mean of the percentage cover values from all 
the vegetation plots at 2.5 arc-min raster cells in which the species 
was present in EVA. Second, we evaluated the frequency distribu-
tion of these percentage cover values (see Figure  1 for details on 
the procedure for three example species). For this, we computed the 
shape of the distribution function of the percentage cover values. In 
general, those values are not normally, exponentially or log-normally 
distributed (Figure 1a–c); thus, we developed a non-parametric ap-
proach for measuring the shape of the distribution function. This 
was achieved by calculating the distribution quantiles in 5% steps, 
resulting in 20 quantile values. We then fitted a non-linear model on 
those 20 quantile values and obtained the estimate and the credible 

F IGURE  1 Examples of distribution of species’ cover values from vegetation plots and calculated mean cover value for (a) Achillea nobilis, 
the species with the lowest mean cover value, (b) Atriplex portulacoides, a species with intermediate mean cover value and (c) Carex elongata, 
the species with the highest mean cover value. Note the log scale for frequency. Distribution quantiles from species’ cover values were 
calculated and used to compute the shape of the frequency distribution function for each species, respectively (d–f). Non-linear models on 
the extracted quantile values were applied to calculate the area under the histograms of cover values (AUH), ranging from 0 to 1, with values 
close to 0 indicating a strongly right-skewed distribution whereas values close to 1 point to a strongly left-skewed distribution of cover 
values
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interval of the area under the histogram (AUH) (Figure  1d–f). We 
applied a Bayesian Markov chain Monte Carlo (MCMC) method 
following Feng et al. (2017), using an exponential distribution, 0.95 
confidence level and 10,000 iterations. The resulting AUH value for 
a given species ranged from 0 to 1, with values lower or higher than 
0.5 meaning that the distribution of cover values for a focal species 
is right- or left-skewed, respectively. The lower the AUH value, the 
higher was the rarity (i.e. the proportion of relatively low cover val-
ues). Thus, the AUH values are suitable as proxies for abundance 
structure across the vegetation plots. Hereafter, we refer to the 
AUH values as “skewness of cover values” and use it as an alterna-
tive metric, additional to mean cover, to assess across-plot species 
abundance.

2.3 | Explanatory variables: plant functional traits

We compiled a complete species trait matrix with 20 plant func-
tional traits (see Table 2 and Appendix S1). The trait matrix included 
nine binary variables: five for life form following Raunkiaer (1934); 
three for life cycle (derived from BiolFlor database; Kühn et al., 
2004); and one for clonality (derived from the CLO-PLA database; 

Klimešová et al., 2017). We included information on 11 continuous 
trait variables from the global plant-trait database TRY (Kattge et al., 
2020). All continuous TRY trait values were derived from Bruelheide 
et al. (2018) who applied a gap-filling approach with Bayesian 
Hierarchical Probabilistic Matrix Factorization (BHPMF; Schrodt 
et al., 2015) to fill gaps in the observed species-by-trait matrix data 
received from TRY. Continuous trait variables were ln-transformed 
prior to analysis.

A PCA of the 20 traits included in this study was generated using 
the package factoextra (Kassambara & Mundt, 2017), allowing the 
visualization of the trait contributions (loadings) to the first and 
second principal components (Figure 2). The first component cor-
responded to traits of life form (i.e. therophyte), life (i.e. annual and 
perennial) and clonal growth and accounted for 18.8% of the total 
variation in trait values. The second component, corresponding to 
leaf traits, accounted for 14.6% of the total variation in trait values. 
The third and fourth components corresponded to dispersal traits 
(i.e. seed mass and dispersal unit length) and life form (i.e. hemicryp-
tophyte) and accounted for 11.4% and 8.7% of the total variation in 
trait values, respectively. The mean and standard deviation of ob-
served trait values are given in Table 2. A correlation matrix including 
the correlation coefficients of all pairwise trait combinations can be 

Trait Abbreviation Unit Mean SD

Leaf area LeafArea mm2 2,128.74 6,346.69

Specific leaf area SLA m2/kg 23.30 8.99

Leaf C content LeafC mg/g 451.36 24.93

Leaf N content LeafN mg/g 24.59 7.61

Leaf P content LeafP mg/g 2.14 0.95

Leaf dry matter 
content

LDMC mg/g 0.22 0.08

Leaf N:P ratio LeafNPratio g/g 12.13 6.35

Plant height PlantHeight m 0.41 0.44

Seed mass SeedMass mg 2.36 4.59

Seed number per 
reproductive unit

SeedNumRepUnit 42,956.49 447,429.20

Dispersal unit length DispUnitLeng mm 3.18 2.29

Life cycle length

Annual Annual Proportion [%] 16.2 -

Biennial Biennial Proportion [%] 9.4 -

Perennial Perennial Proportion [%] 81.8 -

Life form -

Phanerophyte Phaneroph Proportion [%] 5.0 -

Chamaephyte Chamaeph Proportion [%] 6.1 -

Hemicryptophyte Hemicrypt Proportion [%] 78.2 -

Geophyte Geoph Proportion [%] 10.7 -

Therophyte Theroph Proportion [%] 14.3 -

Clonality -

Clonal growth ClonalGrowth Proportion [%] 88.8 -

TABLE  2 Traits, abbreviations of trait 
names, units of measurement, and mean 
and standard deviation of observed trait 
values
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found in Appendix S4. The values of trait contributions (loadings) to 
all PCA axes and the explained variation in trait values are also given 
in Appendix S4.

2.4 | Statistical modelling: linking plant functional 
traits to mean cover values, skewness of cover values, 
geographic range size, and climatic niche size

We used the function phylo.maker from the package V. PhyloMaker (Jin 
& Qian, 2019) to create a phylogenetic tree of the studied species. The 
function phylo4d from the package phylobase (Hackathon et al., 2013) 
was applied to link trait data to the species’ phylogeny. We applied 
Pagel’s Lambda statistic (Pagel, 1999) and Fritz and Purvis’ D (Fritz & 
Purvis, 2010) statistics to quantify the strength of phylogenetic signal 
among the 456 studied species for each of the 20 studied trait vari-
ables. Pagel’s Lambda statistic revealed a strong phylogenetic signal in 
all continuous trait variables. Fritz and Purvis’ D revealed a phyloge-
netic signal in all binary trait variables (see Appendix S4). Therefore, 
we ran phylogenetic generalized least-squares models (i.e. a phyloge-
netically corrected model) using the function pgls from the package 
caper (Orme et al., 2018), that takes into account the phylogenetic non-
independence between species trait values when analysing the rela-
tionships linking plant functional traits to mean cover values, skewness 
of cover values, geographic range size, and climatic niche size. We also 
applied phylogenetic generalized least-squares models to examine the 
relationship between species’ geographic range size and climatic niche 
size, as well as between species’ mean cover values and skewness of 
cover values. To allow fair comparisons of the magnitude of effect sizes 
between continuous and binary trait variables, all continuous and ln-
transformed trait variables were standardized by subtracting the mean 
and dividing by two standard deviations (Gelman, 2008). The lasso 

procedure in function glmnet from the package glmnet (Friedman et al., 
2010) was applied to extract those of the 20 trait variables that contrib-
uted the most in the four linear models (mean cover values, skewness 
of cover values, geographic range size, and climatic niche size being the 
four studied response variables). The minimum lambda ratio value in 
each of the four linear models was 0.005, 0.0005, 0.0001 and 0.01 for 
mean cover values, skewness of cover values, geographic range size and 
climatic niche size, respectively (see Appendix S4 for the predictor vari-
ables included in the models). To test the effect of trait combinations 
and interactions for each of the four response variables, we then tested 
all possible combinations of the predictor variables that contributed the 
most, including their two-way interaction terms, applying the dredge 
function from the MuMIn package (Barton, 2019). We allowed for a 
maximum of three predictor terms to be included in a given candidate 
model (m.max = 3); with this, univariate models were applied for sin-
gle traits and multivariate models for trait combinations (see Appendix 
S4 for the lists of candidate models for the four response variables). 
Finally, the Akaike Information Criterion (AIC), with ∆AIC < 2 was used 
to identify the most parsimonious candidate model with a maximum of 
three predictor terms for each of the four studied response variables. 
We computed the variance inflation factor (VIF) for each predictor term 
in the most parsimonious models to check for potential multicollinearity 
issues among the continuous predictor variables, using the function vif 
from the package car (Fox & Weisberg, 2019).

As a complementary analysis, we ran another set of phylogenetic 
generalized least-squares models but using principal components (PCs) 
from the PCA on the trait space as explanatory variables instead of 
using the original set of trait variables. Because PCs represent uncor-
related dimensions of trait values, this analysis provides an alterna-
tive approach to test for trait syndromes on species’ local abundance 
and distribution patterns. We used all the species scores on all 20 
PCs as predictor terms in the models described above and tested for 

F IGURE  2 Principal component 
analysis of the 20 traits included in 
this study. Colour represents the trait 
contributions (%) to the PCA (first and 
second components). The first and second 
components accounted for 18.8% and 
14.6% of the total variation in trait values, 
respectively. For abbreviation of the trait 
names see Table 2
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combinations and interactions between PCs in the same way as de-
scribed for traits. By applying the dredge function we tested all possi-
ble combinations of the predictor variables that contributed the most, 
including two-way interaction between PCs, for each of the four re-
sponse variables. AIC with ∆AIC < 2 was used to identify the most par-
simonious candidate model with a maximum of three predictor terms 
for each of the four studied response variables (see Appendix S4 for 
the trait contributions [loadings] to all 20 PCs).

3  | RESULTS

3.1 | Broad-scale distribution metrics: geographic 
range size and climatic niche size

Species’ range size (number of occupied grid cells in geographical 
space) ranged from 1,947 in Dactylorhiza sambucina to 782,025 in 
Stellaria media with a median range size of 310,070 cells. Species’ 
climatic niche size (number of occupied PCA grid cells within the cli-
matic niche space) ranged from 162 in Scabiosa canescens to 9,318 in 
Plantago major with a median of 3,236 cells. We found a positive re-
lationship between species’ geographic range and climatic niche size 
(R2 = 0.605, p-value < 0.001 in a phylogenetically corrected model; 
Appendix S4).

3.2 | Local abundance metrics: mean cover and 
skewness of cover values

Species’ mean cover from all the vegetation plots in which a species 
was present ranged from 2.4% for Achillea nobilis to 24.8% for Carex 

elongata (Figure 1a and c). The interquartile range of was 4.6% to 
8.1% and the median was 5.9%. Species’ skewness of cover values 
ranged from 0.081 (strongly right-skewed distribution of low cover 
values) in Achillea nobilis to 0.385 in Atriplex portulacoides (Figure 1d 
and e). The interquartile range was 0.158–0.226 and the median 
was 0.180. Species’ mean cover was positively related to species’ 
skewness of cover values in a phylogenetically corrected model 
(R2 = 0.763, p-value < 0.001; Appendix S4).

3.3 | The contribution of functional traits to 
explaining values and skewness of cover values

All response variables were better explained by trait combinations 
than by single traits, e.g. among the list of candidate models for 
mean cover as response variable, the best univariate model with 
plant height as predictor variable was ranked 17 (see Appendix S4). 
SLA was the strongest predictor for all response variables; with spe-
cies with high SLA having larger range sizes, broader climatic niche 
sizes, and higher local abundances. For each specific response vari-
able, SLA interacted with other traits to give scale-specific and dif-
ferent trait responses. Specifically, geographic range size was larger 
in species with taller stature and lower leaf N:P ratio. In contrast, 
climatic niche size was larger in species that had lower leaf C con-
tent. The mentioned functional traits were significantly, though 
not strongly related to species’ geographic range size (R2 = 0.090, 
p-value < 0.001) and climatic niche size (R2 = 0.069, p-value < 0.001) 
in the phylogenetic generalized least-squares models (Table  3, 
Figure 3a and b). Species’ mean cover and the skewness of cover val-
ues was higher in species with higher SLA value and with higher leaf 
area values. The interaction of the variables SLA and leaf area was 

Response 
variable

Multiple R2; 
p-value

Predictor terms 
entered in model

Regression 
coefficient p-value VIF

Geographic 
range size

0.090; <0.001 SLA (m2/kg) 0.213 <0.001 1.015

Plant height (m) 0.140 <0.01 1.014

Leaf N:P ratio (g/g) −0.140 <0.01 1.020

Climatic 
niche size

0.069; <0.001 SLA (m2/kg) 0.181 <0.001 1.063

Leaf C (mg/g) −0.126 <0.01 1.043

Therophyte 0.108 0.096 1.024

Mean cover 0.211; <0.001 SLA (m2/kg) 2.146 <0.001 1.066

Leaf area (mm2) 1.417 <0.001 1.076

Leaf area (mm2) * SLA 
(m2/kg)

1.722 <0.001 1.041

Skewness of 
cover values

0.169; <0.001 SLA (m2/kg) 0.033 <0.001 1.066

Leaf area (mm2) 0.025 <0.001 1.076

Leaf area (mm2) * SLA 
(m2/kg)

0.030 <0.001 1.041

Note: Akaike Information Criterion (AIC) was used to identify the most parsimonious model for 
each of the four response variables. Interaction terms are indicated by *. Computed variance 
inflation factor (VIF) for each predictor variable was low, indicating that the predictors were not 
correlated with each other.

TABLE  3 Effects of species traits on 
species geographic range size, climatic 
niche size, mean cover and skewness of 
cover values
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positive and these functional traits were significantly related to both 
species mean cover (R2 = 0.211, p-value < 0.001) and the AUH meas-
ure of the skewness of cover values (R2 = 0.169, p-value < 0.001; 
Table 3, Figure 4a and b).

The specific traits identified in the final multivariate models for 
the four response variables had also high loadings on the PCs that 
were identified as important predictors in the multivariate PCA-
based models (see Appendix S4 for the trait contributions [load-
ings] for all 20 PCs). In addition, the axes captured some more traits 
with maximum absolute loadings that were not selected in the final 
trait-based models, such as leaf area for geographic range size, leaf 
P content for climatic niche size, clonal growth for mean cover and 
leaf area for the skewness of cover values. However, for each of the 
four response variables, the three PCs in the final models explained 
less variation than the trait-based models: geographic range size 
(R2  =  0.063, p-value <  0.001; in the sequence of importance, the 
model included PCs 12, 2 and 1), climatic niche size (R2 = 0.069, p-
value < 0.001; based on PCs 1, 12 and 19), mean cover (R2 = 0.123, 
p-value < 0.001; based on PCs 13, 2 and 4) and skewness of cover 
values (R2 = 0.094, p-value < 0.001; based on PCs 6, 2 and 4).

4  | DISCUSSION

Species’ local abundances (i.e. a measure of commonness) were 
more strongly related to traits than were species’ broad-scale distri-
bution patterns in the geographic and climatic space. This indicates 

that plant traits better capture local processes acting at the commu-
nity level (such as biotic processes) than broad-scale macroecologi-
cal processes. Both local abundances and broad-scale distribution 
patterns were better predicted by combinations of traits than by 
single traits.

Specific leaf area had a significant positive effect and explained 
most of the observed variation in all four models predicting species’ 
local abundance and broad-scale distribution patterns. SLA is a pro-
ductivity- and competitive ability-related trait, that reflects species 
strategies for rapid acquisition of resources, with higher SLA values 
allowing a species to capture more light for a given biomass invest-
ment in leaves, for example (Díaz et al., 2004; Wright et al., 2004; 
Mariotte, 2014). In line with our findings, several studies state com-
mon species to be associated with higher SLA (Grime et al., 1997; 
Díaz et al., 2004; Mariotte, 2014; Lachaise et al., 2020). While spe-
cies’ local abundances were best predicted by the interaction be-
tween leaf area and SLA, reflecting the leaf economics spectrum 
trait syndrome (Díaz et al., 2004), broad-scale distribution metrics 
were best predicted by different combinations of traits. While geo-
graphic range size increased with increasing plant height, climatic 
niche size decreased with increasing leaf carbon content, and both 
increased with increasing SLA.

At the local scale, leaf area showed a significantly positive effect 
on species abundance. This result offers a functional explanation 
that species with larger leaves, allowing better light capture, are able 
to attain higher local abundances than species with smaller leaves 
(Mariotte, 2014). Moreover, leaf area was particularly important in 

F IGURE  3 Scatter plot of observed values and regression lines from phylogenetic generalized least-squares models, showing the effects 
of the three most predictive terms on species’ (a) geographic range size and (b) climatic niche size. For geographic range size, coloured and 
dashed lines represent the 5th, 50th and 95th percentile in values for plant height and leaf N:P ratio, respectively; for climatic niche size, 
coloured lines, solid and dotted, represent the 5th, 50th and 95th percentile in leaf C content values for therophytic and non-therophytic 
species, respectively
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interaction with SLA values, as species’ local abundance was higher 
in species with large leaves and high SLA values. Like SLA, leaf area is 
interpreted as a trait that is positively related to species’ productivity 
and competitive ability (Diaz et al., 2004; Wright et al., 2004). This 
indicates that being nearer the “fast” end of the leaf economics spec-
trum (i.e. trait syndrome) tends to increase local abundance. In con-
trast, the ability to grow clonally was not selected in any of the final 
models based on original trait variables. The ability of species for 
clonal growth plays an important role both in short-distance spread 
and in persistence within habitats (Benot et al., 2013) and previous 
studies found clonality to be positively associated with local abun-
dance (Eriksson & Jakobsson, 1998; Kolb et al., 2006). Accordingly, 
this trait had high axis loadings in the PC-based model with mean 
cover value as response variable. The absence of clonal growth from 
our final models based on original trait values is probably due to its 
negative correlation with SLA in our set of species.

At large spatial extent, geographic range size of species was posi-
tively related to plant height (i.e. with taller species being more wide-
spread). High stature is known to have a competitive advantage and 
to be associated with common species. Greater plant height of widely 
distributed species suggests that these species may have higher com-
petitive ability for space and light than narrowly distributed species. A 
similar positive correlation between plant height and geographic range 
size was found for herbaceous species in the French Mediterranean 
region (Lavergne et al., 2004) and in temperate forests in Germany 
(Kolb et al., 2006). We found leaf N:P ratio to be negatively correlated 
with geographic range size. Nitrogen (N) and phosphorus (P) avail-
ability can limit plant growth in terrestrial ecosystems, and N:P ratios 
are on average higher in stress-tolerant species compared to ruderals 

(Güsewell, 2004). Ruderal species are characterized by rapid growth 
and they establish much quicker and thrive better in disturbed habi-
tats than stress-tolerant and competitor species (Grime, 1979; Wright 
et al., 2004; Guo et al., 2018) and generally undergo long-distance 
dispersal (Baker, 1965). Thus, a plausible explanation is that ruderal-
ity has a positive effect on species’ geographic range size. As shown 
in a global study by Bruelheide et al. (2018), species’ leaf N:P ratio 
declines at higher latitudes. Many species primarily found in boreal re-
gions obtain broader geographic range sizes in comparison to species 
mainly found further south (e.g. in Mediterranean regions), presumably 
because of post-glacial re-expansion. This might be another plausible 
explanation for the negative relationship between geographic range 
size and leaf N:P ratio in our study.

In our study, the distribution range in climatic space was larger in 
species with lower leaf carbon content, even when accounting for SLA. 
In general, carbon content is expected to be negatively related to SLA 
(Reich, 2014), but both traits seem to explain independent variation 
in climatic niche size. This was brought about by species with broad 
climatic niche sizes, for which SLA alone was a poor predictor, such 
as species with a tendency to succulence (e.g. Plantago major), which 
have leaves with low SLA but yet low leaf carbon content. This indicates 
that species following a “fast” strategy, according to the leaf econom-
ics spectrum, are better adapted to obtain broad climatic niche sizes. 
Species with a therophytic life form (i.e. annual plants that overwinter 
as a seed) did show marginally greater climatic tolerance (i.e. broader 
climatic niche size). A short generation time is a selective advantage 
to annuals over biennials and perennials (Pysek & Richardson, 2007), 
with annual species being capable of faster reproduction and spread 
by seeds than perennials, e.g. many weed species are annual ruderal 

F IGURE  4 Scatter plot of observed values and regression lines from phylogenetic generalized least-squares models, showing the effects 
of the relevant species traits on species’ local abundance. Plots show the effect of the interaction between leaf area and SLA on (c) mean 
cover and (d) skewness of cover values. Coloured lines represent the 5th, 50th and 95th percentile in values for leaf area
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species that generally undergo long-distance dispersal (Baker, 1965). 
Finally, traits related to dispersal, regeneration and persistence were 
not significantly correlated with local abundance or broad-scale distri-
bution in our models. These results confirm previous studies that found 
no significant relationship between species’ abundance or broad-scale 
distribution and seed mass (Thompson et al., 1999; Leishman & Murray, 
2001; Lavergne et al., 2004) or life cycle length (Kolb et al., 2006).

Our results largely confirm trends previously reported about the 
existing association between species’ geographic range and climatic 
niche size, with widely distributed species also having broad climatic 
tolerances and geographically narrowly distributed species also nar-
rowly distributed in climatic space (Gaston, 2000; Slatyer et al., 2013; 
Cardillo et al., 2019). We found an overall right-skewed distribution in 
cover values for most of the studied species, with species exhibiting 
low cover at most sites and high cover in only a few sites across their 
distribution range. The species mean cover values were positively re-
lated to the skewness of cover values. Therefore, for our species set, 
we consider the measure of skewness, calculated as the AUH, a robust 
tool to capture both the mean and the variability of cover values across 
a species' whole distribution range.

Nevertheless, single plant traits and trait syndromes only weakly 
explained the total observed variation in species’ broad-scale distri-
bution metrics. We see two plausible explanations for the weak pre-
dictive power of functional traits on species’ broad-scale distribution 
metrics.

First, our study was carried out on the species’ whole Eurasian 
distribution range, which includes a wide range of habitat types and 
bioclimatic zones. Species functional traits are expected to be related 
to those environmental conditions under which the species occurs 
(Lavorel & Garnier, 2002; McGill et al., 2006). With this, both widely 
distributed and geographically restricted species might be character-
ized by the same traits in different habitats, vegetation types or geo-
graphic regions, depending on the local conditions (Aerts & Chapin, 
2000). Therefore, future studies should incorporate habitat variability, 
by means of comparisons among single habitat types (e.g. by applying 
EUNIS habitat classification; Chytrý et al., 2020), and test for consis-
tency of the role of traits for patterns of species commonness at dif-
ferent spatial scales.

Second, in this study, we used mean trait values derived from 
trait databases. Several studies have provided evidence that func-
tional traits express not only species-specific characteristics, but 
also intraspecific variability in leaf traits (Reich & Oleksyn, 2004; 
Albert et al., 2011; Moles et al., 2014; Niinemets, 2015; Wright et al., 
2017). This intraspecific trait variation may influence the interactions 
among and between species and their environment and, therefore, 
might influence species performance (Bolnick et al., 2003; Siefert 
et al., 2015). Therefore, we encourage future studies to include in-
traspecific trait variation in addition to mean values for species traits 
when investigating studies over large geographic scales.
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