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We propose a method for a posteriori evaluation of classification stability which compares the classification of sites in the
original data set (a matrix of species by sites) with classifications of subsets of its sites created by without-replacement
bootstrap resampling. Site assignments to clusters of the original classification and to clusters of the classification of each
subset are compared using Goodman-Kruskal’s lambda index. Many resampled subsets are classified and the mean of
lambda values calculated for the classifications of these subsets is used as an estimation of classification stability.
Furthermore, the mean of the lambda values based on different resampled subsets, calculated for each site of the data set
separately, can be used as a measure of the influence of particular sites on classification stability. This method was tested
on several artificial data sets classified by commonly used clustering methods and on a real data set of forest vegetation
plots. Its strength lies in the ability to distinguish classifications which reflect robust patterns of community
differentiation from unstable classifications of more continuous patterns. In addition, it can identify sites within each
cluster which have a transitional species composition with respect to other clusters.

Different types of hierarchical or non-hierarchical cluster
analysis are routinely applied in the classification of plant
and animal communities. Although the existence of
multiple gradients in community data may negatively
affect classification stability (repeatability, robustness; Cao
et al. 1997, Hennig 2008), community ecologists con-
tinue to publish clustering results without any informa-
tion on how stable these results are. Many studies
describe and compare the effects of different clustering
methods on classification results in ecology and systema-
tics (Gauch and Whittaker 1981, Podani 1989, Belbin
and McDonald 1993, Cao et al. 1997, Brown and
Martin 1998, Tichý et al. 2010), but they have hardly
ever focused on the stability of clustering results produced
by different algorithms after data reduction. In contrast,
data resampling has become a standard tool for obtaining
statistically verified results in other disciplines (Good
2006). Gauch and Whittaker (1981) defined classification
stability (robustness) as a resistance against several types
of data set modifications: a) simulation of error or noise,
b) random division of the data set into subsets, which are
classified separately, c) addition, or d) removal of sites.
However, some of these options are of limited use for
testing the classification stability in community ecology.
The distributions of many species are closely related to
those of other species because community patterns consist
of complex interactions among species and between
species and the environment. A simple addition of noise
(a) or artificial sites with a random species composition

(c) may bias data set structure and introduce unrealistic
species combinations. Classifications of subsets (b) can be
compared only indirectly (e.g. using similarities of species
compositions between clusters; Illyés et al. 2007, Botta-
Dukát 2008) and such tests require a high number of
sites within each cluster. Therefore, only random reduc-
tion of data sets (d) allows direct comparison of the
classification of the original data set with classifications of
its subsets.

Bootstrap with replacement is the most popular
randomization technique in ecological and environmental
applications (Manly 2007). This method was also proposed
for testing the classification stability of community data
(Pillar 1999, McKenna 2003). However, this type of
bootstrap cannot be properly applied to multi-dimensional
space, where correlations between variables (species) in-
validate the assumptions of the independence of variables
and the identical distribution of observations (Brocchieri
2000). In addition, replication of sites in the bootstrap
samples simulates community data with a high spatial
autocorrelation between some sites or the overrepresenta-
tion of sites from particular habitat types. However,
ecologists tend to avoid the oversampling of some areas or
some habitat types within their data sets by sampling within
environmentally and/or spatially defined strata (Austin and
Heyligers 1989, Goedickemeier et al. 1997) or by the
stratified resampling of large databases prior to their analysis
(Knollová et al. 2005). These issues can be overcome
by using a modification of bootstrap resampling called
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without-replacement bootstrap, which does not permit the
inclusion of any site into the bootstrap sample more than
once (Shao and Tu 1995, Shuangge 2006).

The aim of this paper is to introduce a simple
resampling method which 1) enables a posteriori overall
testing of classification stability and 2) identifies transitional
sites which may destabilize classification results. We
demonstrate this method using artificial and real ecological
data sets.

Material and methods

Assessment of classification stability

The newly proposed algorithm repeatedly compares the
classification of the original data set with classifications of
its randomly selected subsets created by the without-
replacement bootstrap.

Consider a data set S of n sites (the original data set).
From this data set we generate a with-replacement bootstrap
sample S* of n sites and then remove all duplicated sites
from this bootstrap sample. In such a scheme, the bootstrap
sample size varies from sample to sample, but its average
size is 63.2% of the original data set size n. We classify the
original data set and the bootstrap sample to a pre-defined
number of clusters using the same classification method and
the same input options. Each site included in the bootstrap
sample is then labelled with two cluster identifiers, one
from the original partition of the whole data set and the
other from the partition of the bootstrap sample. The
cluster identifiers of sites in the original data set and its
bootstrap sample are cross-tabulated and compared using
Goodman�Kruskal’s lambda index (l; Goodman and
Kruskal 1954), a measure of association based on the
proportional reduction in error in cross-tabulation analysis,
which was proposed as a consistent and reliable measure
for comparing classifications (Podani 1986). The l is
defined as:
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where ni,j denotes the number of sites of the i-th cluster of
the original data set partition which appeared in the j-th
cluster of the bootstrap sample partition; ni,. and n.,j are
marginal totals of the cross-tabulation. Only sites present in
the bootstrap sample are considered. The l ranges from 0 to
1, with the lowest and highest values indicating minimum
and maximum agreement between classifications, respec-
tively. The value of l is computed for many different
without-replacement bootstrap samples and the mean of the
l values based on different bootstrap samples is used as an
estimation of classification stability.

The lambda index tends to give better results in the case
of higher number of clusters. In the extreme situations,
when the number of sites is equal to the number of clusters,
l has a value of 1. Hence we suggest adjustment of the

mean l to suppress the effect of different data set sizes or
numbers of clusters:

ladj�
l� lrand

1 � lrand

(2)

where lrand is the mean of the l values calculated from the
random distribution of bootstrap sample sites across the
tested number of clusters.

Identification of transitional sites

We assume that each site included in the data set may have
a different effect on classification stability. If more sites
with a transitional species composition between clusters of
the partition of the original data set are included in the
bootstrap sample, the agreement between the partition of
the original data set and the partition of the bootstrap
sample would be lower, and so would be the value of l.
This is because the transitional sites would have a higher
probability of being assigned to different cluster than they
were in the partition of the original data set. If boot-
strapping is repeated many times, the transitional sites
would have higher probability of occurring in the bootstrap
samples with lower l values than non-transitional sites.
Therefore we propose using the mean of the l values from
the bootstrap samples in which the site is included as a
measure of the site effect on classification stability: the lower
the mean l value, the stronger the effect of the site on
classification instability.

Artificial data sets

We tested the new method using three artificial data sets
with species presences/absences, which were divided into
three clusters (Fig. 1). Data sets A, B and C consisted of 30
species (rows) and 90 sites (columns). Data set A contained
three site clusters of equal size (30, 30 and 30 sites) with
species presences in one third of sites. Data set B contained
three clusters of unequal size (70, 10 and 10 sites), where
the first 10 species occurred in 70 sites, while the other 20
species occurred in 10 sites. Data set C was divided into
three clusters (32, 26 and 32 sites) and the frequency of
each species was 32. Data sets A and B contained natural
groups of sites with species fully concentrated in one of the
three clusters, whereas data set C represented a continuous
community pattern. To simulate chance species occurrences
in data sets A, B and C, we shifted 10%, 20%, . . ., 90% of
randomly chosen species occurrences from the original
cluster to a randomly chosen site in the data set (Fig. 1).
The degree of species occurrence concentration within
clusters (fidelity) was quantified using the mean of all
positive values of the phi coefficient of association calcu-
lated between each cluster and each species (Chytrý et al.
2002, De Cáceres and Legendre 2009). Similarity between
sites within and among clusters was illustrated in ordination
diagrams of principal coordinates analysis applied to the
Sørensen distance matrix (PCoA; Legendre and Legendre
1998), calculated using the R program (R Development
Core Team 2010). The partition of the original data set
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with three clusters was compared with the newly established
partitions (also with three clusters each) of its bootstrap
samples.

Tests with artificial data sets

We applied four clustering algorithms to demonstrate the
performance of the new method, including complete
linkage, unweighted pair group method with arithmetic
averages (UPGMA), beta-flexible clustering (with b�
�0.1; �0.25; �0.4) and k-means. Each of the first
three algorithms was combined with Sørensen distance as a

measure of the resemblance between sites. Since the k-
means algorithm does not allow Sørensen distance to be
used as a resemblance measure, we calculated the principal
coordinate analysis with Sørensen distance and used the
matrix of coordinates from this analysis instead of the raw
species-by-plot matrix. In such a way we obtained results
for k-means clustering that were comparable with the
results of the other clustering methods. For each original
data set and clustering method, we repeated the bootstrap
resampling, classification of the bootstrap sample and l
calculations 1000 times. The mean value of l was used as
a measure of classification stability. The lrand was
calculated 10 000 times.
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Figure 1. Schemes of the artificial data sets of 90 sites and 30 species used for testing of the new method. Data set A represents sharply
separated clusters of equal size, B represents sharply separated clusters of unequal size, and C represents a partition of a continuous
gradient in species composition. Percentages of random shifts of species occurrences to another cluster are indicated. Two-dimensional
PCoA ordination diagrams (Sørensen distance matrix) for data set A illustrate the differences in data set structure for five selected
modifications to the original data set.

809



Data set C, representing a continuous gradient in species
composition, was used to test the ability of the proposed
method to identify transitional sites. Each l value calculated
in each iteration was assigned to all sites of the particular
bootstrap sample and the process of bootstrap resampling,
classification and calculation of l was repeated 100 000
times to decrease the standard error and to obtain precise
mean values for each site.

Real ecological data set

In addition to the tests using artificial data, we demon-
strated the performance of the new method on a real
ecological data set which included 202 vegetation plots
sampled in deciduous forests in the Podyjı́ National Park,
Czech Republic (Chytrý and Vicherek 1995). Each plot
included records of all plant species with covers estimated
on the Braun-Blanquet scale. The mid-percentage values of
each degree on the scale were square-root transformed and
classified using Sørensen distance and beta-flexible cluster-
ing with b��0.25. The mean l was calculated for 2, 3,
4, . . ., 50 clusters.

Results

Differences in l between the data sets and clustering
methods are summarized in Table 1. The classifications of
data sets A and B were almost fully repeatable whenB40%
of species occurrences were randomly shifted to another
cluster, and for most methods they were quite stable until
60% of species occurrences were randomly shifted. How-
ever, a higher random noise led to lower classification
stability. Data set A with clusters of equal size usually
yielded slightly more stable classifications than data set B
with clusters of unequal size. K-means clustering gave the
most stable results out of all the compared clustering
algorithms. Classifications of data set C, representing a
community with continuous variation in species composi-
tion, showed some degree of instability even when no noise
was introduced. Using the mean l value for the sites from
different bootstrap samples, transitional sites were identified
near the cluster borders and at the extremes of the gradient
(Fig. 2). The vegetation data set showed local peaks of l
value for partitions with four and nine clusters (Fig. 3),
indicating that these partitions were more stable than the
alternative partitions with different numbers of clusters.

Discussion

For a long time, bootstrap resampling has been routinely
used for the evaluation of classifications of population
samples based on molecular AFLP or isozyme data
(Felsenstein 1985, Efron et al. 1996, Holmes 2003). Like
species composition in community ecology, molecular
sequences are not samples of a homogeneous statistical
population because of high correlations between nucleotides
adjacent in the sequences. Therefore, a high number of
replicated samples does not yield reliable clusters, but
instead emphasizes prevailing biases (Brocchieri 2000). In

the bootstrap without replacement method, the weight of
each object (i.e. site in community ecology) remains the
same and we simply test the classification stability of
randomly undersampled data sets. The changing number
of sites in each bootstrap sample allows testing the overall
classification stability, which may vary with the number of
sites selected from the original data set.

The new method proposed here is completely indepen-
dent of the classification hierarchy and can be applied to
partitions with any number of clusters resulting from any
clustering method. The results are comparable between
different data sets, classification algorithms, resemblance
measures and data transformations. However, we also
suggest the use of adjusted lambda index in cases when
the data set size or cluster number of the compared
classifications is considerably different.

The tests with artificial data sets of a known structure,
performed in this study, demonstrated that the new method
reliably identifies the stability of a partition, which reflects
the degree of noise in the input data. We found systematic
differences between the clustering algorithms tested. The
k-means clustering is perhaps the most popular non-
hierarchical classification method due to its simple algo-
rithm and usually easily interpretable results (Li and Chung
2007). This method gave very robust results, even in data
sets with a rather high degree of noise. However, it has also
some disadvantages. With noisy data, k-means clustering
need not yield the same result for each run: since the final
partition depends on the initial assignment of sites to
clusters, two partitions of the same data set may differ. It is
also sensitive to outliers (Ray and Turi 1999, Tran et al.
2003). Generally, non-hierarchical clustering algorithms are
less frequently used in community ecology. Researchers
usually prefer hierarchical clustering methods, which give
the best performance with noisy data (Bowman et al. 2004),
and they select an appropriate partition with a certain
number of clusters by pruning the classification dendro-
gram. Of the hierarchical methods, we tested complete
linkage, UPGMA and the beta flexible method. The
classification stability of beta-flexible clustering was only
slightly lower than that of k-means clustering, but complete
linkage and UPGMA produced less stable partitions.

The comparison of classification stability of the different
numbers of clusters applied to the actual community data
set of forest vegetation identified two peaks of the mean l
value, which reasonably reflected the structure of the data
set. The first maximum at four clusters distinguished
thermophilous oak forests on basic bedrock, dry forests
on acidic bedrock, mesophilous forests and alluvial forests.
The second maximum at nine clusters mostly reflected
phytosociological alliances distinguished using expert
knowledge in the original study (Chytrý and Vicherek
1995). This agreement with the expert-based classification
indicates that this approach may also identify partitions
with an optimal number of clusters, under the assumption
that the optimal partition is the most stable one.

The method proposed here, based on the combination
of without-replacement bootstrap resampling with the
Goodman�Kruskal’s lambda index, not only quantifies
classification stability but also enables the identification of
sites that are transitional between individual clusters.
Such a method is applicable a posteriori to any partition.
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Table 1. Mean values of Goodman�Kruskal’s lambda calculated as a measure of similarity of classification between the partition of the original data set and partitions of its bootstrap samples from data sets
A, B and C (Fig. 1). Data set A � sharply separated clusters of equal size (i.e. with an equal number of sites); data set B � sharply separated clusters of unequal size; data set C � continuous gradient. The
second column shows the percentage of species occurrences randomly shifted to another cluster. The third column shows the mean of all positive values of the phi coefficient of association, indicating the
overall degree of association between species and clusters.

Data set Percentage of
random shifts

Mean phi
coefficient

Mean Goodman�Kruskal’s lambda

Complete linkage UPGMA Flexible beta (b��0.1)
Sørensen

Flexible beta (b��0.25)
Sørensen

Flexible beta (b��0.4)
Sørensen

K-means

A 0% 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10% 0.900 1.000 1.000 1.000 1.000 1.000 1.000
20% 0.800 1.000 1.000 1.000 1.000 1.000 1.000
30% 0.700 0.995 1.000 0.995 0.999 0.995 1.000
40% 0.600 0.871 0.991 0.990 0.991 0.988 0.994
50% 0.485 0.612 0.904 0.898 0.888 0.884 0.961
60% 0.379 0.458 0.742 0.712 0.760 0.759 0.880
70% 0.262 0.234 0.291 0.389 0.435 0.430 0.617
80% 0.152 0.082 0.051 0.096 0.130 0.149 0.157
90% 0.084 0.068 0.045 0.073 0.097 0.105 0.048

B 0% 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10% 0.904 1.000 1.000 1.000 1.000 1.000 1.000
20% 0.799 1.000 1.000 1.000 1.000 1.000 1.000
30% 0.679 1.000 1.000 1.000 1.000 1.000 1.000
40% 0.587 0.992 0.923 0.987 0.998 0.997 0.998
50% 0.471 0.883 0.541 0.905 0.917 0.903 0.939
60% 0.378 0.502 0.203 0.508 0.800 0.797 0.800
70% 0.276 0.256 0.205 0.271 0.314 0.352 0.249
80% 0.186 0.131 0.131 0.142 0.162 0.169 0.127
90% 0.123 0.058 0.072 0.075 0.061 0.061 0.000

C 0% 0.507 0.663 0.729 0.794 0.805 0.811 0.938
10% 0.480 0.547 0.654 0.758 0.767 0.770 0.868
20% 0.420 0.433 0.595 0.762 0.787 0.802 0.929
30% 0.366 0.366 0.565 0.664 0.713 0.728 0.816
40% 0.353 0.299 0.326 0.596 0.686 0.699 0.821
50% 0.265 0.259 0.195 0.495 0.526 0.534 0.533
60% 0.210 0.219 0.217 0.355 0.420 0.434 0.521
70% 0.163 0.108 0.057 0.144 0.289 0.314 0.293
80% 0.097 0.069 0.031 0.064 0.107 0.129 0.091
90% 0.119 0.059 0.036 0.051 0.078 0.094 0.052

8
1

1



It identifies sites within each cluster which have a transi-
tional species composition between clusters and thus
contribute to classification instability. Our example of site
transitionality presented in the PCoA ordination diagram
(Fig. 2) includes an artifact known as the horseshoe effect,
in which the pattern along the second axis is curved relative

to the first axis, and does not represent a true gradient
(Podani and Miklós 2002). However, the position of each
site along the gradient is still clearly visible. In some
applications it can be useful to exclude such sites from
classification or to reduce their influence on the classifica-
tion. De Cáceres et al. (2009) proposed the identification
and removal of transitional sites in order to maximize the
number of mathematically reproduced clusters. However,
their approach is restricted to the use of a non-hierarchical
fuzzy algorithm and it cannot be applied to partitions based
on pruned dendrograms from hierarchical clustering.

In the new method, we propose measuring classification
stability using Goodman�Kruskal’s lambda index (Podani
1986). This index gives similar results as the Rand index
(Hubert and Arabie 1985), which is frequently used in
ecological studies and which can correct for chance effects.
However, we refrained from using the Rand index because
we found that it overestimated the classification stability for
partitions with unequal cluster sizes, like our artificial data
set B (not shown).

We conclude that the new method is suitable for the
assessment of classification stability, particularly in com-
munity ecology. Although in fields such as genetics and
systematics the evaluation of classification stability has
recently become a standard research tool, its importance
has not yet been recognized in community ecology, although
classification based on species composition is a common
procedure applied to many studies of ecological commu-
nities. In the future, community ecologists should pay more
attention not only to how good the clusters are (in sense of
cluster interpretability in ecological context, their internal
variability etc.), but also they should test how stable (robust,
repeatable) their classifications are. The algorithm of
this method is available in the JUICE program for the
classification and analysis of quantitative community
data (Tichý 2002), which is freely available on the internet
(<www.sci.muni.cz/botany/juice>).
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Goodman, L. A. and Kruskal, W. H. 1954. Measures of

association for cross-classification. � J. Am. Stat. Assoc. 49:
732�764.

Hennig, C. 2008. Dissolution point and isolation robustness:
robustness criteria for general cluster analysis methods. � J.
Multivar. Anal. 99: 1154�1176.

Holmes, S. 2003. Bootstrapping phylogenetic trees: theory and
methods. � Stat. Sci. 2: 241�255.

Hubert, L. and Arabie, P. 1985. Comparing partitions. � J.
Classification 2: 193�218.

Illyés, E. et al. 2007. Semi-dry grasslands along a climatic gradient
across central Europe: vegetation classification with validation.
� J. Veg. Sci. 18: 835�846.
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