
Contents

Abstract (in Czech) 2

1 Introduction 4
1.1 A motivation: symmetries of the Laplacian on Rn . . . . . . . . . 4
1.2 From Euclidean space to conformal geometry . . . . . . . . . . . . 4
1.3 From conformal geometry to AHS structures . . . . . . . . . . . . 5
1.4 Invariant quantization on AHS structures . . . . . . . . . . . . . . 6
1.5 Prolongation of first BGG operators . . . . . . . . . . . . . . . . . 7
1.6 Summary: the author’s contribution and further directions . . . . 8

2 Almost Hermitean symmetric structures 9
2.1 |1|–graded Lie algebras and first order structures . . . . . . . . . . 9
2.2 Canonical Cartan connections and AHS–structures . . . . . . . . 10
2.3 Natural bundles, fundamental derivative and tractor connection . 11
2.4 Conformal geometry in the world of AHS structures . . . . . . . . 13

3 Invariant quantization 16
3.1 A generic construction of invariant quantization . . . . . . . . . . 16
3.2 Invariant quantization on conformal densities . . . . . . . . . . . . 18

4 Symmetries of conformal powers of the Laplacian 20
4.1 Symmetries of Pr in the locally flat case . . . . . . . . . . . . . . 21
4.2 An inroad to the curved case . . . . . . . . . . . . . . . . . . . . . 23

5 Prolongation of first BGG operators 24
5.1 Invariant prolongation connections on AHS manifolds . . . . . . . 24
5.2 Prolongation connection in conformal geometry . . . . . . . . . . 26

6 Reprints of articles 31
Reference [13]: Equivariant quantizations for AHS-structures . . . . . . 32
Reference [34]: Conformally invariant quantization – Towards the com-

plete classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Reference [20]: Higher symmetries of the conformal powers of the Lapla-

cian on conformally flat manifolds . . . . . . . . . . . . . . . . . 65
Reference [30]: Second order symmetries of the conformal Laplacian . . 92
Reference [23]: On a new normalization for tractor covariant derivatives 118
Reference [24]: Invariant prolongation of overdetermined PDEs in pro-

jective, conformal, and Grassmannian geometry . . . . . . . . . . 143

1



Abstrakt

Habilitačńı práce je souborem článk̊u [13, 34, 20, 30, 23, 24] publikovaných v mezi-
národńıch časopisech, které jsou všechny evidovány v databáźıch WoS nebo SCO-
PUS. Většina těchto článk̊u má spoluautory, jimiž jsou A. Rod Gover, Andreas
Čap, Fabian Radoux, Jean-Philippe Michel, Matthias Hammerl, Petr Somberg
a Vladimı́r Souček. Pod́ıl všech autor̊u na společných článćıch je rovnocenný.
Reprinty článk̊u jsou v Sekci 6.

Oblast výzkumu těchto matematik̊u se prot́ıná v konformńı geometrii, která je
nejznáměǰśı strukturou ve tř́ıdě tzv. AHS struktur. Význam konformńı geometrie
spoč́ıvá mj. v jej́ım bĺızkém vztahu k matematické fyzice a také k analýze. Právě
na pomeźı těchto oblast́ı matematiky patř́ı problém, který motivuje výsledky
shrnuté v této habilitaci: studium symetríı Laplaceova operátoru ∆. To jsou
operátory Σ takové, že ∆ ◦ Σ = Σ′ ◦ ∆ pro nějaký operátor Σ′. Technická for-
mulace problémů, jejichž vyřešeńı je nutné pro úplný popis symmetríı Laplaceova
operátoru, je v Sekci 1.1.

Symetrie Laplaceova operátoru jsou známé d́ıky článku [15] publikovaném
v Annals of Mathematics. Ćıl této habilitace je ovšem mnohem obecněǰśı: prezen-
tovat geometrické nástroje a postupy pro studium symetríı invariantńıch operátor̊u
ve tř́ıdě AHS geometrických struktur. Přesněǰśı formulace vyžaduj́ı jistý matema-
tický aparát a čtenář je najde v Sekci 1. Hlavńı výsledky se týkaj́ı invariant-
ńıho kvantováńı v Sekci 3, symetríı konformńıch mocnin Laplaceova operátoru
a diskuze plochá versus křivá geometrie v Sekci 4 a prodlužováńı prvńıch BGG
operátor̊u v Sekci 5.
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Preface

The thesis is a collection of articles [13, 34, 20, 30, 23, 24]. All of them have been
published in international journals indexed by WoS or SCOPUS. Results and some
background theory are summarized in the survey part (Sections 1 – 5) on pages
4 – 27. Reprints of articles are in Section 6.

Our main research interest lies in the theory (bi)linear invariant operators on
manifolds with a geometrical structure (known as AHS structure). This provides
a suitable geometrical framework for the specific problem which motivates this
survey: to understand symmetries of the Laplace operator [15]. Such symmet-
ries play an important role in analysis (in the study of separable solutions of
PDE’s) and in mathematical physics (where the terminology ‘higher’ or ‘hidden’
symmetries is often used). I hope this survey will be useful for researches on the
borderline of these fields.

Pronouncement

Almost all papers included in this thesis have co-authors, namely A. Čap, A.R.
Gover, J.-P. Michel, F. Radoux, M. Hammerl, P. Somberg and V. Souček. The
contributions of all authors were equivalent since the results were based on com-
mon discussions. Formally, the author’s contribution to the paper [34] was 100%,
the author’s contribution the papers [13, 20] was 50%, the author’s contribution
the paper [30] was 33% and the authors contribution to the papers [23, 24] was
25%.

However, the developement of articels [23, 24] was rather specific. Main results
of these articels were obtained more or less independently by M. Hammerl on one
side and by P. Somberg, V. Souček and the author of the habilition on the other
side. After we found out that we work on the same problem, we decided to publish
our results together. From this point of view, the author’s contribution to [23, 24]
can be also considered as 33%.

Acknowledgement

I wish to thank all the co-authors for their friendly and always very helpful col-
laboration. I would like to express my gratitude to my colleague Prof. Jan Slovák
for our numerous interesting discussions.
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1 Introduction

1.1 A motivation: symmetries of the Laplacian on Rn

The Laplacian operator is of prominent interest in differential geometry, mathe-
matical physics and analysis and has many analogues in other mathematical fields.
We shall start with the simplest version, i.e. the Laplacian on smooth functions
on the Euclidean space Rn. This is the operator ∆ = ∇i∇i : C∞(Rn)→ C∞(Rn)
where ∇i = ∂/∂xi and we have used the Einstein’s summation convention. There
is an obvious notion of symmetries of ∆ : C∞(Rn) → C∞(Rn) given by diffe-
rential operators Σ : C∞(Rn) → C∞(Rn) such that ∆Σ = Σ∆. We shall term
such operators commuting symmetries of ∆. As a slight reformulation, one can
also introduce commuting symmetries as operators preserving eigenspaces of ∆.
Another (and weaker) possibility is to study operators Σ which preserve the null
space of ∆ and this will be the property of our interest. We say Σ is a conformal
symmetry or just a symmetry of ∆ if

∆Σ = Σ′∆ for some Σ′ : C∞(Rn)→ C∞(Rn). (1)

Note this also means that Σ′ preserves the range of ∆. A short computation reveals
that operators Σ and Σ′ have the same symbol. The vector space of symmetries
forms obviously an algebra which we denote by HS. Operators of the form Σ =
T∆ are always symmetries which we shall term trivial symmetries. Observe the
space of trivial symmetries is a left ideal which we denote by (∆) ⊆ HS. The
main problem is to describe the quotient HS := HS/(∆).

What do we need to understand fully symmetries of ∆? First, we need to
classify symmetries Σ which means to find out which tensor fields can appear
as symbols of symmetries in the first place. Another question is to construct
a preferred symmetry with a prescribed symbol. Then one should understand
the algebra HS. All these problems are solved in the essential Eastwood’s paper
[15]. This result also shows the significance of conformal geometry. Although
defined using the Euclidean metric, the Laplacian is in a suitable sense confor-
mally invariant, cf. Section 1.2. (Note this follows already from knowledge of first
order symmetries.) Thus the basic step in the study of symmetries should be to
understand invariance of ∆.

These questions motivate the main aim of this thesis: we explore to which
extent and directions one can develop a general theory of symmetries of (suitably
invariant) differential operators.

1.2 From Euclidean space to conformal geometry

Conformal structure is the pair (M, [g]) where M is a smooth manifold of the
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dimension n, g a (pseudo)Riemannian metric and the class [g] contains metrics
obtained by rescaling g by a positive smooth function. This determines the class of
corresponding Levi-Civita connections [∇]. Although the Laplacian ∆ = gab∇a∇b

is not conformally invariant, there is a curvature modification known as the con-
formal Laplacian (or Yamabe operator) ∆Y := ∆ − n−2

4(n−1)
Sc : E [−n/2 + 1] →

E [−n/2 − 1] where Sc is the scalar curvature of g and E [w] are density bundles,
cf. Section 2.4 for details concerning our convention for conformal weights w ∈ R.
The conformal invariance means ∆Y = ∆̂Y for the operator ∆̂Y defined with
respect to another choice ĝ ∈ [g] with corresponding ∇̂ ∈ [∇].

Note the problem of symmetries of ∆Y is much simpler in the Euclidean case
(where ∆Y = ∆ because Sc = 0, cf. Section 1.1) than for general conformal
structures (M, [g]). In fact, the full understanding of symmetries of ∆Y is available
only on locally flat conformal structures (M, [g]), i.e. when g is locally isomorphic
to the Euclidean metric on Rn. Generally, first order symmetries of ∆Y come
from infinitesimal symmetries of the structure (i.e. conformal Killing fields) but
the classification of higher order symmetries is a highly nontrivial problem. Only
the case of second order symmetries is solved and we shall discuss this result in
Section 4.2.

Above we started with the Laplacian ∆ and observed its conformal invariance.
Taking a slightly different point of view, we can start with a given conformal struc-
ture (M, [g]), choose an arbitrary invariant differential operator Φ and consider
symmetries of Σ analogously as in (1). We shall do this, in the locally flat setting,
for conformal powers of the Laplacian Φ : E [−n/2 + `] → E [−n/2 − `]. That is,
Φ = ∆` on Euclidean spaces. Details are in Section 4. Also symmetries of the
Dirac and Maxwell operators are studied [4, 16, 2].

1.3 From conformal geometry to AHS structures

Conformal geometry is the most studied structure among almost Hermitean sym-
metric (AHS) geometrical structures on M . Another important AHS structure is
projective geometry given as a class of torsion free connections on M which share
the same geodesics (as unparametrised curves). This is a general feature: every
AHS structure is closely related to a reduction of the structure group of GL(n) to
a suitable (simple) subgroup together with a certain class [∇] of affine connections
on M .

We shall however need a theoretical background of AHS manifolds going far
beyond elementary differential geometry used so far. Building on ideas of Cartan
and Tanaka, there is nowadays well established notion of so called Cartan bundle
G → M and Cartan connection ω of type (G,P ) which is a “curved version”
of the bundle G → G/P and the Maurer-Cartan form ω. Here P ⊆ G are Lie
groups. Specializing to the case of a parabolic subgroup P of semisimple G, we
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obtain parabolic geometry . A general and widely developed theory (based the
Lie representation theory for P ⊆ G) is available in [10]. Here AHS structures
form an important subclass and we shall extensively use tractor bundles , splitting
operators and other tools in the so called “BGG machinery”. A brief summery of
this theory is provided in the beginning of Section 2.

Note invariance (or naturality) of various operations means that such ope-
ration is canonically defined using only the geometrical structure (without any
additional choices). One can be more specific on locally flat AHS structures M
which are locally isomorphic to G/P . Here the G-action gives a realization of
the Lie algebra g of G as g ⊆ X(G/P ) thus locally g ⊆ X(M). Invariance of
a differential operator Φ then means that Φ intertwines the action of g. In the
curved case (where the G-action is lost) we simply say that Φ is invariant if it can
be given by an explicit formula in terms of a chosen ∇ ∈ [∇] and its curvature in
such a way that Φ does not depend on this choice.

1.4 Invariant quantization on AHS structures

It turns out that there is indeed a preferred symmetry of the Laplacian for a given
symbol. This is provided by a more general notion of the so called invariant
quantization. Recall given vector bundles E and F over M and denoting by
Diffk(E,F ) the space of linear differential operators Γ(E) → Γ(F ) of the order
≤ k, there is the (principal) symbol map symb : Diffk(E,F ) → Γ(Symbk(E,F )).
Here Symbk(E,F ) = SkTM ⊗E∗⊗F is the bundle of symbols of Diffk(E,F ) and
Sk denotes the kth symmetric tensor product. By quantization we mean a right
inverse Qk : Γ(Symbk(E,F ))→ Diffk(E,F ) of the symbol map symb. Obviously,
there is an associated bilinear operator (σ, ϕ) 7→ Qk(σ)(ϕ) for σ ∈ Γ(Symbk(E,F ))
and ϕ ∈ Γ(E). We say Qk is invariant quantization if this bilinear operator is
invariant for a given AHS structure on M .

As an illustration, consider a smooth manifold M and the exterior derivative
d. We can view the Lie derivative LX along the vector field X ∈ X(M) as the
invariant quantization for the symbol X ∈ Γ(TM). Then the formula LXd = dLX
just means LX is a first order symmetry of d for every vector field X. (Note
this formula is the infinitesimal version of the fact that d commutes with local
diffeomorphisms.) Also observe this cannot have an analogue for higher order
symmetries as there is no higher order analogue of the Lie derivative. The lat-
ter follows from the classification of such operators [22]. Of course, if we equip
M with an AHS structure (i.e. restrict invariance to this category), there will be
many more invariant (bi)linear operators. Thus we can expect existence of in-
variant quantization on such structures. This is indeed the case and we present
a construction of invariant quantization for AHS manifolds in a suitably generic
sense in Section 3.1. However, it turns out such construction does not give a com-
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plete (non)existence result for the invariant quantization Qk. The latter problem
is much more difficult and will be discussed only for the invariant quantization on
conformal densities Qk : Γ(Symbk(E [w], E [w + δ]))→ Diffk(E [w], E [w + δ]) where
w, δ ∈ R. More specifically, we shall show how (non)existence of Qk depends on
δ in Section 3.2.

1.5 Prolongation of first BGG operators

As mentioned in Section 1.1, one of the basic problems in the study of symme-
tries is to understand which tensor fields can appear as symbols of symmetries
of the Laplacian. To formulate the answer, it is useful to employ the abstract
index notation in the sense of Penrose [33]. That is, Ea = TM , Ea = T ∗M ,
E (a1...ak) = SkTM (i.e. symmetrization of indices is denoted by round brackets)
and we shall raise and lower indices using the metric gab ∈ Γ(E(ab)) and its inverse.
It turns out that symbols of symmetries (modulo trivial symmetries) of ∆ on Rn

are σa1...ak ∈ Γ(E (a1...ak)0) characterized by the condition ∇(a0σa1...ak)0 = 0. Here
the subscript 0 denotes the projection to trace free part. Sections σa1...ak satisfy-
ing such system of PDE’s are known as conformal Killing tensors . Also, we point
out that the (conformally invariant) differential operator σa1...ak 7→ ∇(a0σa1...ak)0

is overdetermined.
The latter operator is actually invariant on any conformal manifold (M, [g]).

Similar operators control conformal Killing forms (which are symbols of first or-
der symmetries of the Dirac), twistor spinors etc. They all belong to the class of
“first BGG operators” where corresponding systems of PDE’s are always overde-
termined. They can be naturally constructed using the BGG machinery on all
AHS manifolds (see the beginning of Section 5.1). There is a general approach
how to deal with overdetermined differential operators known as prolongation.
Roughly speaking, this means to add new variables to the section σ (on which an
overdetermined operator acts) such that differentiating this system, the result can
be expressed in terms of variables from the system in an algebraic way. (New va-
riables play the role of derivatives of σ.) This leads to another of the main results
of this habilitation: we present a canonical (and constructive) way how to design
such prolongation for all first BGG operators on AHS structures, see Section 5.1.
That is, the prolongation is invariant. Technically, this is formulated in terms of
the so called prolongation connection ∇̃ on certain natural vector bundles (known
as tractor bundles) on AHS structures.

In fact, this goes beyond the study of symbols of symmetries as solutions
of first BGG operators encode many important geometrical properties of AHS
structures (e.g. metrizability of projective classes etc.). We shall comment upon

that in Section 5.2 together with an explicit form of ∇̃ for some conformal first
BGG operators.
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1.6 Summary: the author’s contribution and further di-
rections

Main results (which summarize the author’s contribution to the field) in this ha-
bilitation are: a generic construction of invariant quantization on AHS structures
(based on [13]), a complete construction of conformal quantization on densities
(based on [34]), description of symmetries of powers ∆` of the Laplacian on con-
formally flat manifolds (based on [20]) and 2nd order symmetries of ∆Y on curved
conformal structures (based on [30]), a general construction of invariant prolon-
gations for first BGG operators on AHS structures (based on [23]) and conformal
examples of explicit form of the prolongation connections (based on [24]).

Reprints of these six articles are appended in Section 6 on page 31 and results
from these articles are marked by boxes below. Also note the list of References is
at the end of the survey part, i.e. before Section 6.

Let as also mention several applications and related research directions of
presented results. Understanding of higher (or hidden) symmetries has an inter-
pretation in physics models [35] and can be used in the seek for explicit solutions
of physically important systems of PDE’s [2, 1]. Symmetries of the Laplacian ∆
(or more specifically systems of several symmetries which mutually commute) are
closely related to existence of distinguished coordinate systems where ∆ has sepa-
rable solutions [32]. Here [30] is one of few results in the curved case which goes
beyond the first order, cf. [2]. In principal, knowing the prolongation connection

∇̃ (or rather its curvature Ω̃), one can deduce curvature obstruction for existence
of solution, see Section 5.1 for details.

Results discussed below are based on geometric considerations (with a substan-
tial use of representation theory) but are of interest also for mathematical physics
and analysis. The author believes that the survey will be useful for researches
in these fields. Let us also mention at least two current projects the author col-
laborates on: new properties of Paterson-Walker metrics [25, 26] (where specific
first BGG operators play an essential role) and study of “higher supersymmetries”
(as symmetries of the (Laplace,Dirac) systems) [31] where a new and physically
interesting realization of certain superalgebras of symmetries is obtained.
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2 Almost Hermitean symmetric structures

In this section we review the basic theory and invariant calculus of AHS structures.
The general theory (cf. Sections 2.1 – 2.3) can be made more explicit for particular
AHS geometries and we demonstrate this in the conformal case, cf. Section 2.4.
This order is not essential and one can also read Section 2.4 first. This depends
on the reader whether he or she prefers to go from ‘general’ to ‘specific’ or vise
versa. This theory (originating in ideas of Cartan [7]) is nowadays standard and
we refer for the recent monograph [10] for details.

AHS structures and invariant calculus

2.1 |1|–graded Lie algebras and first order structures

The starting point for defining an AHS–structure is a simple Lie algebra g endowed
with a so called |1|–grading, i.e. a decomposition g = g−1 ⊕ g0 ⊕ g1, such that
[gi, gj] ⊂ gi+j, where we agree that g` = 0 for ` /∈ {−1, 0, 1}. The classification of
such gradings is well known, since it is equivalent to the classification of Hermitean
symmetric spaces. We put p := g0 ⊕ g1 ⊂ g. By the grading property, p is
a subalgebra of p and g1 is a nilpotent ideal in p.

Given a Lie group G with Lie algebra g, there are natural subgroups G0 ⊂ P ⊂
G corresponding to the Lie subalgebras g0 ⊂ p ⊂ g. For P one may take a sub-
group lying between the normalizer NG(p) of p in G and its connected component
of the identity. Then G0 ⊂ P is defined as the subgroup of all elements whose
adjoint action preserves the grading of g. In particular, restricting the adjoint
action to g−1, one obtains a representation G0 → GL(g−1). This representation is
infinitesimally injective, so it makes sense to talk about first order G–structures
with structure group G0 on smooth manifolds of dimension dim (g−1).

By definition, such a structure is given by a smooth principal bundle p : G0 →
M with structure group G0, such that the associated bundle G0×G0 g−1 is isomor-
phic to the tangent bundle TM . It turns out that the Killing form on g induces
a G0–equivariant duality between g−1 and g1, so G0 ×G0 g1

∼= T ∗M . Using this,
one can realize arbitrary tensor bundles on M as associated bundles to G0. More
generally, any representation of G0, via forming associated bundles, gives rise to
a natural vector bundle on manifolds endowed with such a structure. It turns
out that G0 is always reductive with one–dimensional center. Hence finite dimen-
sional representations of G0 on which the center acts diagonalizably (which we will
always assume in the sequel) are completely reducible, i.e. they split into direct
sums of irreducible representations.

The one–dimensional center of G0 leads to a family of natural line bundles.
For w ∈ R, we can define a homomorphism G0 → R+ by mapping g ∈ G0 to
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| det(Ad−(g))|
w
n , where n = dim (g−1) and Ad−(g) : g−1 → g−1 is the restriction

of the adjoint action of g. This evidently is a smooth homomorphism, thus giving
rise to a one–dimensional representation R[w] of G0. It is easy to see that R[w]
is non–trivial for w 6= 0. (The factor 1

n
is included to get the usual normalization

in the case of conformal structures.) The corresponding associated bundle will
be denoted by E [w], and adding the symbol [w] to the name of a natural bundle
will always indicate a tensor product with E [w]. Using the convention that 1–
densities are the objects which can be naturally integrated on non–orientable
manifolds, E [w] is by construction the bundle of (−w

n
)–densities. In particular, all

the bundles E [w] are trivial line bundles, but there is no canonical trivialization
for w 6= 0.

2.2 Canonical Cartan connections and AHS–structures

The exponential mapping restricts to a diffeomorphism from g1 onto a closed
normal Abelian subgroup P+ ⊂ P such that P is the semidirect product of G0 and
P+. Hence G0 can also naturally be viewed as a quotient of P . In particular, given
a principal P–bundle G →M , the subgroup P+ acts freely on G, and the quotient
G/P+ is naturally a principal bundle with structure group G0. Next, suppose
that there is a Cartan connection ω ∈ Ω1(G, g) on the principal bundle G. Then
the g−1–component of ω descends to a well defined one–form θ ∈ Ω1(G/P+, g−1),
which is G0–equivariant and strictly horizontal. This means that (G/P+ →M, θ)
is a first order structure with structure group G0. In this sense, any Cartan
geometry (p : G → M,ω) of type (G,P ) has an underlying first order structure
with structure group G0. Conversely, one can talk about extending a first order
structure to a Cartan geometry.

It turns out that, for almost all choices of (G,P ), for any given first order
structure with structure group G0 there is a unique (up to isomorphism) exten-
sion to a Cartan geometry of type (G,P ), for which the Cartan connection ω
satisfies a certain normalization condition. (The latter is given by the Kostant’s
codifferential ∂∗, see Section 5.1.) This is usually phrased as saying that such
structures admit a canonical normal Cartan connection. The main exception is
g = gl(n+ 1,R) with a |1|–grading such that g0 = gl(n,R) and g±1

∼= Rn. For an
appropriate choice ofG, the adjoint action identifiesG0 withGL(g−1) = GL(n,R).
A first order structure for this group on a manifold M is just the full linear frame
bundle of M and hence contains no information. In this case, an extension to
a normal Cartan geometry of type (G,P ) is equivalent to the choice of a projec-
tive equivalence class of torsion free connections on the tangent bundle TM , i.e. to
a classical projective structure.

Normal Cartan geometries of type (G,P ) as well as the equivalent underlying
structures (i.e. classical projective structures respectively first order structures
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with structure group G0) are often referred to as AHS–structures. AHS is short
for “almost Hermitian symmetric”. To explain this name, recall that the basic
example of a Cartan geometry of type (G,P ) is provided by the natural projection
G → G/P and the left Maurer–Cartan form as the Cartan connection. This is
called the homogeneous model of geometries of type (G,P ). Now the homogeneous
spaces G/P for pairs (G,P ) coming from |1|–gradings as described above, are
exactly the compact irreducible Hermitian symmetric spaces.

2.3 Natural bundles, fundamental derivative and tractor
connection

Via forming associated bundles, any representation of the group P gives rise to
a natural bundle for Cartan geometries of type (G,P ). As we have seen above,
P is the semi–direct product of the reductive subgroup G0 and the normal vector
subgroup P+, so its representation theory is fairly complicated. Via the quotient
homomorphism P → G0, any representation of G0 gives rise to a representation
of P . It turns out that the representations of P obtained in this way are exactly
the completely reducible representations, i.e. the direct sums of irreducible rep-
resentations. Correspondingly, we will talk about completely reducible and irre-
ducible natural bundles on Cartan geometries of type (G,P ). If we have a Cartan
geometry (p : G → M,ω) with underlying structure (p0 : G0 → M, θ) and E is
a representation of G0, which we also view as a representation of P , then we can
naturally identify G ×P E with G0×G0 E. Hence completely reducible bundles can
be easily described in terms of the underlying structure.

There is a second simple source of representations of P , which leads to an im-
portant class of natural bundles. Namely, one may restrict any representation
of G to the subgroup P and the corresponding natural vector bundles are called
tractor bundles. The most important tractor bundle is the adjoint tractor bundle.
For a Cartan geometry (p : G → M,ω) it is defined by A := G ×P g, so it is
the associated bundle with respect to the restriction of the adjoint representation
of G to P . Now the P–invariant subspaces g1 ⊂ p ⊂ g give rise to a filtration
A1 ⊂ A0 ⊂ A of the adjoint tractor bundle by smooth subbundles. By construc-
tion, A1 ∼= T ∗M and since g/p ∼= g−1 we see that A/A0 ∼= TM . We will write
Π : A → TM for the resulting natural projection. Hence the adjoint tractor
bundle has the cotangent bundle as a natural subbundle and the tangent bundle
as a natural quotient.

The Killing form defines a G–invariant, non–degenerate bilinear form on g. It
turns out that g1 is the annihilator of p with respect to the Killing form, which
leads to duality with g/p ∼= g−1 observed above. On the level of associated bundles,
we obtain a natural non–degenerate bilinear form on the adjoint tractor bundle
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A, which thus can be identified with the dual bundle A∗. Under this pairing,
the subbundle A1 is the annihilator of A0. The resulting duality between A1 and
A/A0 is exactly the duality between T ∗M and TM .

The adjoint tractor bundle gives rise to a basic natural differential operator
for AHS–structures called fundamental derivative. Let us start with an arbitrary
representation E of P and consider the corresponding natural bundle E := G ×P
E→M for a geometry (p : G →M,ω). Then smooth sections of this bundle are in
bijective correspondence with smooth maps f : G → E, which are P–equivariant.
In the special case E = g of the adjoint tractor bundle, we can then use the
trivialization of TG provided by the Cartan connection ω to identify P–equivariant
functions G → g with P–invariant vector fields on G. For a section s ∈ Γ(A), we
can form the corresponding vector field ξ ∈ X(G) and use it to differentiate the
equivariant function f : G → E corresponding to a section ϕ ∈ Γ(E). The result
will again be equivariant, thus defining a smooth section Dsϕ ∈ Γ(E). Hence we
can view the fundamental derivative as an operator D = DE : Γ(A) × Γ(E) →
Γ(E). The basic properties of this operator are the following:

Proposition 2.1 Let E be a representation of P and let E = G ×P E be the
corresponding natural bundle for an AHS–structure (p : G → M,ω). Then we
have:

(i) D : Γ(A) × Γ(E) → Γ(E) is a first order differential operator which is
natural, i.e. intrisic to the AHS–structure on M .

(ii) D is linear over smooth functions in the A–entry, so we can also view
ϕ 7→ Dϕ as an operator Γ(E)→ Γ(A∗ ⊗ E).

(iii) For s ∈ Γ(A), ϕ ∈ Γ(E), and f ∈ C∞(M), we have the Leibniz rule
Ds(fϕ) = (Π(s) · f)ϕ+ fDsϕ, where Π : Γ(A)→ Γ(TM) is the natural tensorial
projection.

(iv) For a second natural bundle F = G ×P F, a P–equivariant map E → F,
and the corresponding linear bundle map Φ : E → F , the fundamental derivatives
on E and F are related by DFs (Φ ◦ ϕ) = Φ ◦ DEs ϕ for all s ∈ Γ(A) and ϕ ∈ Γ(E).

The naturality statement in (iv) justifies denoting the fundamental derivatives
on all natural bundles by the same letter. Since there is no restriction on the
bundle E, the fundamental derivative in the form of part (ii) can evidently be
iterated. For ϕ ∈ Γ(E) we can form Dϕ, D(2)ϕ = D(Dϕ) and inductively D(k)ϕ ∈
Γ(⊗kA∗ ⊗ E).

The fundamental derivative is the basic tool of invariant theory on AHS struc-
tures. Further we shall need two natural differential operators which can be easily
obtained from D. First, the Killing form on g gives rise to a nondegenerate bilinear
form B on A thus also on A∗. Hence composing D(2) : Γ(E)→ Γ(

⊗2A∗⊗E) with
B⊗ id : Γ(

⊗2A∗⊗E)→ Γ(E), we obtain the natural operator C : Γ(E)→ Γ(E)
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called curved Casimir operator . It turns out C is of the first order and acts by
a scalar multiplication on the lowest homogeneity component of ϕ ∈ Γ(E). The
value of this scalar follows from the representation theory (which motivates the
terminology) and we refer to [12] for details.

Next, observe the above theorem indicates D has some properties of linear
connections on E. In fact, there exists such a natural connection if E is a tractor
bundle and this will be henceforth our assumption. Then we have the action
• : A ⊗ E → E and it turns out that Dsϕ + s • ϕ ∈ Γ(E) depends only on
Π(s) ∈ Γ(TM). Thus using Proposition 2.1, we obtain the linear (natural) normal
tractor connection ∇E on E which, for a vector field v ∈ Γ(TM) and any adjoint
tractor s ∈ Γ(A) such that v = Π(s), is defined by

∇E
v ϕ := Dsϕ+ s • ϕ ∈ Γ(E), ϕ ∈ Γ(E).

2.4 Conformal geometry in the world of AHS structures

Here we present a brief summary, further details may be found in [3, 18]. Let M
be a smooth manifold of dimension n ≥ 3. Recall that a conformal structure of
signature (p, q) on M is a class [g] of metrics on M such that ĝ ∈ [g] if ĝ = e2Υg
for a smooth function Υ on M . Here we use the notation E [w] for density bundles
and our convention for weights w ∈ R means E [−n] ∼= ΛnT ∗M . The conformal
class [g] determines the (density valued) conformal metric g ∈ Γ(S2T ∗M [2]),
i.e. the parameter in square brackets indicates tensor product with the corres-
ponding density bundle. This yields the identification TM ∼= T ∗M [2]. For some
calculations we shall need abstract indices in an obvious way, i.e. Ea = T ∗M ,
Ea = TM etc. Given a choice of metric g ∈ [g], we write ∇ for the corresponding
Levi-Civita connection. With these conventions the Laplacian ∆ is given by ∆ =
gab∇a∇b = ∇b∇b . Here we are raising, lowering and and contracting inidces
using the (inverse) conformal metric. Indices will be raised and lowered in this
way without further comment. Note E [w] is trivialized by a choice of metric g
from the conformal class, and we also write ∇ for the connection corresponding
to this trivialization. The coupled connection ∇a preserves the conformal metric.

The curvature Rab
c
d of the Levi-Civita connection ∇a (the Riemannian cur-

vature) is given by [∇a,∇b]v
c = Rab

c
dv
d ([·, ·] indicates the commutator bracket)

for vector field vc ∈ Γ(Ec). This can be decomposed into the totally trace-free
Weyl curvature Wabcd and a remaining part described by the symmetric Schouten
tensor Pab, according to

Rabcd = Wabcd + 2gc[aPb]d + 2gd[bPa]c, (2)

where [· · · ] indicates antisymmetrisation over the enclosed indices. The Schouten
tensor is a trace modification of the Ricci tensor Ricab = Rca

c
b and vice versa:
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Ricab = (n−2)Pab + Jgab, where we write J = Pa
a for the trace of Pab. The Cotton

tensor is defined by Yabc := 2∇[bPc]a. Via the Bianchi identity this is related to
the divergence of the Weyl tensor, (n− 3)Yabc = ∇dWdabc.

A conformal transformation means to replace g ∈ [g] by ĝ = e2Υg ∈ [g]. We

recall that, in particular, the Weyl curvature is conformally invariant, i.e. Ŵabcd =
Wabcd. (Analogously, the Cotton-York tensor is invariant, i.e. Ŷabc = Yabc for
n = 3). Explicit formulae for the corresponding transformation of the Levi-Civita
connection and its remaining curvature components are given in e.g. [3] in terms

of the 1-form Υa := ∇aΥ. For example, ∇̂aϕ = ∇aϕ+ wΥaϕ for ϕ ∈ E [w] and

∇̂afb = ∇afb −Υafb −Υbfa + gabΥ
rfr, fb ∈ Γ(Eb),

P̂ab = Pab −∇aΥb + ΥaΥb − 1
2
ΥcΥcgab.

(3)

We have introduced tractor bundles in Section 2.3. Here we shall do it directly
for the standard tractor bundle over (M, [g]) which corresponds to the standard
representation of the group G = SO(p+1, q+1). It is a vector bundle of rank n+2
defined, for each g ∈ [g], by [T ]g = E [1]⊕ Ea[1]⊕ E [−1]. If ĝ = e2Υg, we identify
(α, µa, τ) ∈ [T ]g with (α̂, µ̂a, τ̂) ∈ [T ]ĝ by the transformation



α̂
µ̂a
τ̂


 =




1 0 0
Υa δa

b 0
−1

2
ΥcΥ

c −Υb 1





α
µb
τ


 . (4)

It is straightforward to verify that these identifications are consistent upon chan-
ging to a third metric from the conformal class, and so taking the quotient by
this equivalence relation defines the standard tractor bundle T over the conformal
manifold. Moreover, T is equipped by (invariant) normal tractor connection ∇T
introduced in Section 2.3 and also an invariant metric h ∈ Γ(S2T ∗) of signature
(p + 1, q + 1) such that ∇S2T ∗h = 0. That is, T ∼= T ∗ and we extend ∇T to the
normal tractor connection on

⊗ T by the Leibnitz rule. In fact, the original (and
easier) way is to define h and ∇T directly by

hAB =




0 0 1
0 gab 0
1 0 0


 and ∇Ta



α
µb
τ


 =




∇aα− µa
∇aµb + gabτ + Pabα
∇aτ − Pabµ

b


 . (5)

It is readily verified (using (4) and (5)) that both h and ∇T are conformally well-
defined, i.e., independent of the choice of a metric g ∈ [g]. It will be sometimes
convenient to use also abstract tractor indices and we put EA = T . Then h and
its inverse allows to raise and lower tractor indices. The curvature ΩT of ∇T is
defined by [∇Ta ,∇Tb ]V C = (ΩT )ab

C
EV

E for V A ∈ Γ(EA). Note ΩT vanishes if and
only if Wabcd = 0 (for n ≥ 4) or Yabc = 0 (for n = 3), see [3] for details.
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Further, given a choice of g ∈ [g], the tractor-D operator or Thomas-D operator
DA : E [w]→ EA[w − 1] = T [w − 1] is defined by

DAϕ :=



w(n+ 2w − 2)ϕ
(n+ 2w − 2)∇aϕ
−
(
∆ + wJ

)
ϕ


 (6)

for ϕ ∈ E [w]. This is conformally invariant, as can be checked directly using the
formulae above.

Beside the standard tractor bundle T = EA, we shall also need the adjoint
tractor bundle A := Λ2T = E [AB]. It follows from components of [T ]g that
[A]g = Eb[2]⊕

(
E[bc][2]⊕ E

)
⊕ Eb and one can deduce from (5) that

∇Aa




αb
µbc | ν
ρb


 =




∇aαb − 2µab − gabν
∇aµbc + Pa[bαc] + ga[bρc] | ∇aν + Parα

r − ρa
∇aρb − 2Pa

rµrb + Pabν


 (7)

where αa ∈ Γ(Ea[2]), µab ∈ Γ(E[ab][2]), ν ∈ Γ(E) and ρa ∈ Γ(Ea). We have A ∼= A∗
because T ∼= T ∗. Further we shall need the conformally invariant fundamental
derivative D : Γ(V ) → Γ(A∗ ⊗ V ) which we introduced in Section 2.3 for any
natural bundle V . Alternatively, one can define D by an explicit formula which
we shall do only for D acting on Γ(

⊗
TM ⊗⊗ T [w]), w ∈ R. First, for ΦA ∈

Γ(EA[w]) = Γ(T [w]) and ϕa ∈ Γ(Ea) = Γ(T ∗M) ∼= Γ(TM [−2]) we put

DBCΦA =




0
0 | wΦA

∇bΦA


+ hA[BΦC] ∈ Γ(E[BC]A[w]) = Γ(A∗ ⊗ T [w]),

DBCϕa =




0
ga[bϕc] | −ϕa
∇bϕa


 ∈ Γ(E[BC]a) = Γ(A∗ ⊗ T ∗M).

Then we extend D to sections of tensor products
⊗

TM ⊗⊗ T [w] using the
Leibnitz rule.

Next we discuss so called strong invariance of differential operators in the sense
of [17]. This can be defined for any AHS structure but we shall need it only in
the conformal case. Let F : Γ(V1) → Γ(V2) be a differential operator given by
an explicit formula in terms of the Levi-Civita connection ∇a, its curvature Rabcd
and various algebraic operations. Given any tractor bundle T ′ ⊆⊗ T , we define
the operator F∇ : Γ(V1 ⊗ T ′) → Γ(V2 ⊗ T ′) by replacing every appearance of ∇
by ∇T ′ in the formula for F . Now assume F is conformally invariant; we say F is
strongly invariant if also the operator F∇ is conformally invariant for any tractor
bundle T ′. (That is, strong invariance is rather a property of specified formulae
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of differential operators.) In particular, the tractor D-operator DA is strongly
invariant which we shall need later. In this case, we shall write DA instead of
(DA)∇ for simplicity. Further examples of strongly invariant operators are the
fundamental derivative D or the conformal Laplacian ∆Y from Section 1.2.

3 Invariant quantization

Henceforth we assume (G →M,ω) is an AHS structure on M and let E and F be
natural irreducible bundles on M . In this section we shall construct an invariant
quantization for differential operators Γ(E) → Γ(F ) of the order ≤ k and we
denote by Symbk(E,F ) the corresponding symbol bundle. Our result will be
generic (but not complete) and to formulate this precisely, we shall consider rather
operators Γ(E) → Γ(F [δ]) with the parameter δ ∈ R. That is, we shall discuss
existence of an invariant quantization

Qk : Γ
(
Symbk(E,F [δ])

)
→ Diffk(E,F [δ]), symb ◦Qk = id (8)

for kth order operators, cf. Section 1.4, depending on δ. This result, based on [13],
is formulated in Section 3.1 below. Then, following [34], we present a different
invariant quantization specifically designed for conformal densities (see Section
3.2) to obtain a complete classification in this case.

3.1 A generic construction of invariant quantization

Given σ ∈ Γ
(
Symbk(E,F [δ])

)
and ϕ ∈ Γ(E), the required invariant quantization

Qk from (8) gives rise to the bilinear invariant operator (σ, ϕ) 7→ Qk(σ)(ϕ) ∈
Γ(F [δ]). We shall construct such operator first (for all δ’s) and then discuss for
which δ ∈ R this actually yields Qk satisfying (8). We shall start with two linear
invariant operators (one for σ and one for ϕ) which we shall combine into a bili-
near operator afterwards. Note our construction is motivated by a (much simpler)
invariant quantization on Riemannian structures where one can simply combine
the symbol σ with iterated Levi-Civita connection applied to ϕ. Such straight-
forward construction is not possible on AHS structures (as there is no canonical
affine connection) so we replace the Levi-Civita connection by the fundamental
derivative. Thus we need to pass to tractors.

First we define a linear invariant operator L acting on σ. As mentioned in
Section 2.3, TM is a quotient ofA. Thus also Symbk(E,F [δ]) = SkTM⊗E∗⊗F [δ]
is a (completely reducible) quotient of V := SkA ⊗ E∗ ⊗ F [δ]. We denote the
projection by Π : V → Symbk(E,F [δ]). Let us write the decomposition of σ into
irreducibles as σ =

⊕
i∈I σi ∈ Γ

(
Symbk(E,F [δ])

)
where I is an index set. Then
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there is an invariant differential operator

L = P (C) : Γ(SkTM ⊗ E∗ ⊗ F [δ])→ Γ(SkAM ⊗ E∗ ⊗ F [δ])

such that Π
(
L(σ)

)
=
⊕

i∈I
γiσi

(9)

where P (C) denotes a polynomial operator in the curved Casimir C, cf. Section
2.3 and γi = pi(δ, n) for some nontrivial polynomials pi. The upshot of this
construction is that for all weights δ ∈ R up to a finite number (when γi(δ, n) = 0
for some i ∈ I) we have Π

(
L(
⊕

γ−1
i σi)

)
= σ. In this sense, L is generically

a splitting operator of the projection Π.
Next we define a linear invariant operator acting on ϕ. This will be simply

the iterated fundamental derivative D(k)ϕ = D . . .Dϕ for ϕ ∈ Γ(E) where D(k) :
Γ(E)→ Γ(

⊗kA∗ ⊗ E).
These two linear operators are used to build a bilinear operator in the theorem

below. We shall use the obvious pairing

〈 , 〉 :
(⊗

kA⊗ E∗ ⊗ F [δ]
)
×
(⊗

kA∗ ⊗ E
)
→ F [δ].

Theorem 1 (Theorem 5 and Corollary 6 from [13])
Using the notation as above, the following holds:

(i) The map (σ, ϕ) 7→ 〈L(σ),D(k)ϕ〉 defines an invariant
bilinear operator Γ

(
Symbk(E,F [δ])

)
× Γ(E)→ Γ(F [δ]).

(ii) For σ =
⊕

i∈I σi ∈ Γ(SkTM⊗E∗⊗F [δ]), the operator

Qk(σ) : Γ(E)→ Γ(F [δ]) defined by Qk(σ)(ϕ) := 〈L(σ),D(k)ϕ〉
is of order at most k and has principal symbol

⊕
i∈I γiσi.

(iii) Assume the weight δ ∈ R is generic in the sense that
γi = pi(n, δ) 6= 0 for all i ∈ I, cf. the discussion below (9).

Then he map Qk(σ) := Qk(⊕i∈I γ
−1
i σi) ∈ Diffk(E,F [δ]) de-

fines an invariant quantization for operators Γ(E)→ Γ(F [δ])
of the order k.

In fact, the above construction of Qk simplifies the construction in [13] where
a bigger set of generic weights was obtained. One can also derive an estimate for
the number of nongeneric weights and an upper bound for these. We refer to [13]
for details.

Let us emphasize that the previous result does not say anything about possible
nonexistence of invariant quantization for nongeneric weights δ. Also, there is no
reason to expect uniqueness. Both these questions are of course important and
we shall address them (in a special case) in the next section.
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3.2 Invariant quantization on conformal densities

The full classification of existence and uniqueness of invariant quantization should
be understood primarily in the locally flat case which will be henceforth our as-
sumption. The following crucial result is due to Michel [29] and it is conve-
nient to formulated it for (usually irreducible) subbundle H ⊆ Symbk(E,F ) :=
SkTM ⊗ E∗ ⊗ F for k ≥ 0.

Theorem 3.1 ([29]) Let E and F be irreducible natural bundles for the locally
flat AHS structure (G →M,ω). Then the invariant quantization QkH for operators
Diffk(E,F ) restricted to symbols in H ⊆ Symbk(E,F ) exists and is unique if and
only if there is no invariant linear differential operator Γ

(
H)→ Γ

(
Symbk−i(E,F )

)

for i = 1, . . . , k.

Roughly speaking, this theorem says that unique existence of invariant quan-
tization is obstructed by existence of linear invariant operators between symbols
(of different order). This is very useful because linear invariant operator on AHS
structures are rare in the sense that, given the bundle E, the space of linear in-
variant operators with the source bundle E is finite dimensional. Moreover, the
space of conformally invariant linear operators is completely classified [5, 6]. Thus,
we can expect more specific results in this case.

Assume (M, [g]) is a locally flat conformal manifold and put E := E [w] and
F := E [w + δ]. We say the weight δ ∈ R is critical if the unique existence
of invariant quantization for operators Diffk(E [w], E [w + δ]) is lost for some (or
equivalently any, cf. Theorem 3.1) weight w ∈ R. Further we say the weight w is
resonant for the critical weight δ if invariant quantization for Diffk(E [w], E [w+δ])
(nonuniquely) exists. Note the set of generic weights from Section 3.1 is signifi-
cantly smaller than the set of noncritical weights which can be seen already from
first order quantization on densities. Here there is at most one linear invariant
operator Γ(TM [δ])→ Γ(E [δ]) (i.e. at most one critical weight δ, cf. Theorem 3.1)
whereas there are four nongeneric weights δ. (The latter fact follows from the
construction (9) via curved Casimirs as there are four irreducible subquotients of
the conformal adjoint tractor bundle A.)

The main aim of this section is to construct invariant quantization on densities
for all noncritical weights. Details are in [34] in terms of invariant quantization
Qk
H : Γ(H) → Diffk(E [w], E [w + δ]) for all irreducible subbundles H of symbols.

We put

H := Sk
′

0 TM [δ′] ⊆ SkTM [δ] where k′ = k − 2`, δ′ = δ + 2` (10)

where 0 ≤ 2` ≤ k and the subscript 0 indicates the trace free part. First we shall
discuss critical weights for H according to Theorem 3.1. For parameters in (10),
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we put

Σk′ = {−(n+k′+j−2) | 1≤ j ≤k′}, Σ′k′,` = {j−1 | 1≤ j ≤`},

and Σ′′k′,` = {−1

2
(n+ 2k′ − 2j) | 1 ≤ j ≤ `}

(11)

and we put Σ0 = Σ′k′,0 = Σ′′k′,0 = ∅. Using this and the classification in [5, 6], the

following display exhausts all linear invariant operators Γ(H)→ Γ(Sk−iTM [δ]):

Γ(H)→ Γ(Sk
′−i

0 TM [δ′]), δ′ = −(n+ k′ + i− 2) ∈ Σk′,0,

Γ(H)→ Γ(Sk
′+2j

0 TM [δ′ − 2j]), δ′ = j − 1 ∈ Σ′k′,`,

Γ(H)→ Γ(Sk
′

0 TM [δ′ − 2j]), δ′ = −1
2
(n+ 2k′ − 2j) ∈ Σ′′k′,`.

(12)

Note the case δ′ ∈ Σk′,0 is a divergence type operator of order k′− i+ 1, δ′ ∈ Σ′k′,`
is the generalized conformal Killing operator of order j, cf. Section 4 and δ′ ∈ Σ′′k′,`
yields a power of Laplacian type operator (on symmetric tensor fields) of order
2j. Combining this list with Theorem 3.1, the set of critical weights δ′ is Σk′,` :=
Σk′ ∪ Σ′k′,` ∪ Σ′′k′,`.

It remains to construct QkH for all weights δ′ 6∈ Σk′,` which we shall do in the
general (curved) setting. We shall start with the special case k = k′ and δ = δ′

and denote the invariant quantization by Qkδ : Γ(Sk0TM) → Diffk(E [w], E [w + δ])
in this case. A detailed analysis of operators in (12) and Theorem 3.1 reveals that
the set of critical weights δ for Qkδ is exactly Σk. An existence of Qkδ is stated in
the part (i) of the following theorem.

Theorem 2 (Theorem 3.1 and Theorem 3.3 from [34])
Let (M, [g]) be an arbitrary conformal manifold and consider
the symbol σ ∈ Γ(H) ⊆ Γ

(
Symbk(E [w], E [w+ δ])

)
and param-

eters k, k′, δ, δ′ and ` as in (10). Then
(i) There is an explicit construction of Qk′δ′ : Γ(H) →

Diffk
′
(E [w], E [w+ δ′]) for all noncritical weights δ′ 6∈ Σk′ such

that the formula for Qk′δ′ is strongly invariant.
(ii) Using Qk′δ′ from (i) and σ ∈ Γ(H), the construction

σ 7→ DA1 · · ·DA`Qk′δ′ (σ)∇DA`
· · ·DA1 : E [w]→ E [w + δ]

gives rise to the invariant quantization QkH for any w ∈ R and
every noncritical weight δ′ 6∈ Σk′,`. Here DA is the tractor D-
operator, cf. (6) and the notation Qk′δ′ (σ)∇ is explained below.

Recall the notion of strong invariance (together with the notation Qk′δ′ (σ)∇)
was introduced at the end of Section 2.4.
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Idea of the proof. It is worth to emphasize that whereas the generic construction
in Section 3.1 was based on basic tools of the invariant calculus on AHS structures,
the construction in the theorem is more involved (and it works only for conformal
structures). Indeed, the proof of the part (ii) in [34] is based on a rather long
computation. But at least the part (i) is related to the generic construction of
Qk′ . More precisely, Qk′δ′ is obtained by a careful refinement of Qk′ . This is based
on the observation that the target spaces of L and D(k′) used in Theorem 1 (i)
are actually “too big” which induces too many nongeneric weights. It turns out
there is a subbundle Ã ⊆ A with the subquotient Ã∗ of A and modifications
L̃ : Γ(H)→ Γ(Ã∗[δ′]) of L and D̃(k′) : Γ(E [w])→ Γ(Ã[w]) such that Qk′δ′ (σ)(ϕ) =

〈L̃(σ), D̃(k′)(ϕ)〉 for ϕ ∈ Γ(E [w]). Details are in [34]. �

Finally note that for δ critical, resonant weights w are closely related to exis-
tence of linear invariant operators on E [w]. This can be used [34] to construct
invariant quantization Diffk(E [w], E [w + δ]) for such pairs of δ and w. This is,
however, limited in the curved case since existence of certain linear invariant ope-
rators on E [w] is lost if we pass to the curved setting [18]. These operators are
known as conformal powers of the Laplacian (or GJMS operators [21]). We shall
focus on these operators (in the locally flat case) in the next section.

4 Symmetries of conformal powers of the Lapla-

cian

We discussed the conformal version of the Laplacian ∆Y in Section 1.2. The
classification [5, 6] of linear conformal operators tells us that also powers of the
Laplacian have conformally invariant analogues

Pr = ∆r + lot : Γ(E [−n/2 + r])→ Γ(E [−n/2− r]) (13)

where lot stands for “lower order terms”. It is however a nontrivial question
whether such operators Pr exist also in the curved setting and it turns out this is
generally not true for n even and 2r > n [18].

Similarly as in Section 1.1, we say the operator Σ : Γ(E [−n/2+r])→ Γ(E [−n/2+
r]) is a symmetry of Pr if

PrΣ = Σ′Pr for some Σ′ : Γ(E [−n/2− r])→ Γ(E [−n/2− r]). (14)

We would like to describe the algebra HSr := HSr/(Pr) where HSr is the algebra
of all symmetries of Pr and (Pr) ⊆ HSr denotes the left ideal of trivial symmetries,
cf. Section 1. The result for the locally flat case is summarized (based on [20]) in
Section 4.1 below. However, such question is far too ambitious in general. In fact,
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it is a complicated problem to understand HSr (as the vector space) already for
∆Y and we present (based on [30]) the answer at least for 2nd order symmetries
in Section 4.2.

4.1 Symmetries of Pr in the locally flat case

Henceforth we assume (M, [g]) is locally flat. Given the symbol σ ∈ Γ(SkTM), the
invariant quantization for Diffk(E [w], E [w]), w = −n/2+r is an obvious candidate
for a symmetry Σ of the order k of Pr. Assume for simplicity σ ∈ Γ(H) ⊆
Γ(SkTM) for an irreducible subbundle H. Then observe the corresponding weight
δ = 0 is both generic for Qk from Section 3.1 (which follows from properties of
curved Casimirs) and also noncritical for QkH from Section 3.2. Using further the
uniqueness in Theorem 3.1, we conclude Qk(σ) = QkH(σ), i.e. both constructions
of invariant quantization coincide.

Of course, not all sections σ can appear as symbols of symmetries so we need to
find conditions such symbols must satisfy. As a motivation, consider the commuta-
tor T := PrQk(σ)−Qk(σ)Pr : Γ(E [−n/2+r])→ Γ(E [−n/2−r]). Taking the princi-

pal symbol of T , we obtain the operator Γ(H) 3 σ ψ7→ symb(T ) ∈ Γ(Sk+2TM [−2r])
which is conformally invariant by construction. Clearly if PrQk(σ) = Qk(σ)Pr
then ψ(σ) = 0. Now it remains to find out to which of three classes in (12) the
operator ψ belongs.

The precise characterization is actually more complicated as the above consi-
deration does not determine ψ uniquely. A direct computation in [20] shows the
middle operator in (12) controls symbols of symmetries. More specifically, this is
the linear conformally invariant operator

Γ(SkTM) ⊇ Γ(Sk−2`
0 TM [2`]) =: Γ(H)

ψ→ Γ(Sk+1
0 [−2`− 2]),

σa1...ak−2`
ψ7→ ∇(b0 · · · ∇b2`σa1...ak−2`)0 + lot

(15)

where 0 ≤ 2` ≤ k and we have used abstract indices. That is, H is the subbundle
of the form (10) with δ = 0, k′ = k − 2` and δ′ = 2`. Solutions σ of ψ are
known as generalized conformal Killing tensors . Also note ψ is overdetermined
and conformally invariant also in general curved setting. Such operators will be
studied in Section 5 in detail.

The following theorem describes HSr as the vector space:

Theorem 3 (Theorem 2.4 from [20]) Let r, k, `, k′ =
k − 2` and H be given as above.

(i) For each non-zero σ ∈ Γ(H) such that ` ∈ {0, 1, · · · , r−
1}, a solution of (15), there is canonically associated a non-
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trivial symmetry Σ := QkH(σ) of Pr with the leading term

σa1...ak′ (∇a1 · · · ∇ak′ )∆
`.

(ii) Modulo trivial symmetries, locally any symmetry of
Pr is a linear combination of such operators Σ, for various
solutions σ of (15), with ` and r in the range assumed here.

The next step is to describe HSr as a g-module, g = sop+1,q+2 where (p, q) is
the signature. This is based on the bijective correspondence between the space
of solutions of ψ as given by (15), which we denote by Hk′

` , and ∇V -parallel
sections of the tractor bundle V := (�k′A) � (�2`T ) where � is the Cartan
product, A is the adjoint tractor bundle and T is the standard tractor bundle.
(More details concerning this relationship can be found in Section 5.) Recall the
standard and the adjoint tractor bundle are induced by the standard and the
adjoint representation of g, respectively. Using the symbolism of Young diagrams,
the standard and the adjoint representation of g are and , respectively. Thus,
as a g-module, we have

HSr ∼=
∞⊕

k′=0

r−1⊕

`=0

Hk′
` where Hk′

`
∼=

k′︷ ︸︸ ︷

· · ·
· · ·

2`︷ ︸︸ ︷
· · · 0 (16)

To formulate the algebraic structure of HSr in the theorem below, we shall
further need following projections of the tensor product U1⊗U2 for U1, U2 ∈ g = :

U1 � U2 ∈
0
, U1 • U2 ∈ 0, 〈U1, U2〉 ∈ R and [U1, U2] ∈ .

Theorem 4 (Theorem 2.5 from [20]) The algebra HSr is
isomorphic to the tensor algebra

⊗
g modulo the two sided

ideal generated by

U1⊗U2−U1�U2−U1•U2−
1

2
[U1, U2]+

(n−2r)(n+2r)

4n(n+1)(n+2)
〈U1, U2〉

for U1,U2 ∈ g and the image of �2r in ⊗2rg.
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4.2 An inroad to the curved case

Here we briefly discuss 2nd order symmetries of the conformal Laplacian P1 =
∆Y on a general conformal manifold (M, [g]). Even such a specific question was
understood only recently [30] which illustrates the complexity of the problem for
general curved symmetries of operators Pr. Note first order symmetries are given,
due to the conformal invariance of ∆Y , by the Lie derivative LX along conformal
Killing fields X on (M, [g]).

Assume Σ is a 2nd order symmetry of ∆Y ; then modulo trivial symmetries,
the symbols of Σ is σ ∈ Γ(S2

0TM). These symbols are controlled by the condition
ψ(σ) = 0 in the locally flat case according to Theorem 3 (i). This is conformal
Killing operator ∇(aσbc)0 = 0 in this case and one can show by the direct com-
putation that this condition is necessary also in the curved case. The problem is
that ∇(aσbc)0 = 0 is not sufficient, i.e. not all conformal Killing 2-tensors σab give
rise to symmetries of ∆Y . There is an additional obstruction for symbols σab of
symmetries formulated in terms of the 1-form

Obs(σ)a = 2(n−2)
3(n+1)

(
Wt

rsa∇t − 3Yrsa
)
σrs ∈ Γ(Ea) = Γ(T ∗M) (17)

where Wabcd is the Weyl tensor and Yabc the Cotton-York tensor, cf. Section 2.4.
One can show (17) is well defined (i.e. conformally invariant). Also note Q2(σ) =
Q2
H(σ) for H = S2

0TM ⊆ S2TM which holds not only in the flat case (cf. the first
paragraph of 4.1) but also in the curved case (which can be shown by a direct
computation.)

Theorem 5 (Theorem 4.11 from [30]) Let σ ∈ Γ(S2
0TM).

(i) There is a symmetry Σ of ∆Y with the principal symbol
σ if and only if σ is a conformal Killing 2-tensor and Obs(σ)
is an exact 1-form.

(ii) Assume σ satisfies conditions in (i). Then modulo
trivial symmetries and first and zero order symmetries, Σ has
the form Σ = Q2

H(σ)+f for a function f ∈ C∞(M) satisfying
Obs(σ) = −2df .

This characterization of symbols of symmetries deserves a more detailed discus-
sion, however. There are no conformal Killing tensors (or generally no solutions
of overdetermined equations) on generic conformal structures. Thus one might
think that the very existence of such solution σ is so restrictive that Obs(σ) is
always exact. It is proved in [30] that this is not true. That is, we found a con-
formal manifold (M, [g]) with a conformal Killing 2-tensor σ such that Obs(σ) is
not exact (actually not closed). Summarizing, exactness of Obs(σ) is a nontrivial
condition.
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Finally note, above considerations indicate there are curvature obstructions
for existence of conformal Killing tensors. The conceptual way in this direction
is to study prolongation of the corresponding overdetermined system of PDE’s.
This is studied, in much more general context, in the next section.

5 Prolongation of first BGG operators

We have already used the bijective correspondence between solutions of ψ on
H ⊆ SkTM from (15) and a parallel sections of the tractor bundle V := (�k′A)�
(�2`T ) in the locally flat case, cf. the discussion below Theorem 3. A theoretical
background of this correspondence is summarized below in Section 5.1, our aim
here is to explain that this is indeed a “prolongation” in the usual sense used in
the study of PDE’s.

The point is that H is a quotient of V hence we have the (algebraic) projec-
tion Π0 : Γ(V )→ Γ(H). The crucial fact is that there is an invariant differential
splitting L0 : Γ(H)→ Γ(V ) of Π0, i.e. Π0 ◦L0 = idH . Then we can use the normal
tractor connection ∇V on V and assuming ψ(σ) = 0, we conclude ∇VL0(σ) = 0.
The latter can be deduced for example from the classification [5, 6] of conformally
invariant operators (since nonvanishing ∇VL0(σ) would give rise to a conformal
operator on σ ∈ Γ(H) which cannot exist). Thus L0(σ) is a closed system (com-
posed of σ and new variables) in the sense that∇VL0(σ) is algebraic in components
of L0(σ). Thus L0(σ) with∇V is the prolonged system for σ and ψ from (15). Also
note L0 = P (C) for some polynomial P in the curved Casimir C thus operators
L0 and Π0 are closely related to L and Π used in Section 3.1, cf. the discussion
around (9).

In fact, the 1-1 correspondence between solutions of certain invariant operators
and parallel sections of suitable tractor bundles holds for all locally flat AHS
manifold. This follows from the “BGG machinery” which we review in Section
5.1 below. Thus an obvious question arises: is there such 1-1 correspondence also
in the curved case? The answer is positive but not straightforward. The point
is that the normal tractor connection ∇V does not have desired properties in the
curved case. Our solution is to find a new normalization and consequently a new
tractor connection which we shall denote by ∇̃V and call prolongation connection.
Results below are based on articles [23, 24].

5.1 Invariant prolongation connections on AHS manifolds

This construction is parametrised by the choice of the tractor bundle V = G ×P
V. Then the normal tractor connection ∇V extends to the exterior covariant
derivative d∇ : Ep(V )→ Ep+1(V ) where Ep(V ) denotes the space V -valued p-forms
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on M . (We write d∇ instead of d∇
V

for simplicity.) Note the lowest homogeneity
(i.e. invariant) component of d∇ is algebraic, cf. (5) and known as the Kostant
differential ∂p : Ep(V ) → Ep+1(V ), [27]. Its adjoint, the Kostant codifferential
∂∗p+1 : Ep+1(V )→ Ep(V ) is P -invariant (contrary to ∂p) and satisfies ∂∗p ◦∂∗p+1 = 0.
This defines Lie algebra cohomology bundles Hp := ker ∂∗p/im ∂∗p+1 as subquotients
of ker ∂∗p ⊆ ΛpT ∗M ⊗ V . (By abuse of notation, we consider ∂∗p acting both on
bundles and sections.) The crucial fact here is that the corresponding projection
Πp has a unique invariant differential BGG–splitting Lp with

Πp : Ep(V ) ⊇ ker ∂∗p→ Γ(Hp) and Lp : Γ(Hp)→ ker ∂∗p ⊆ Ep(V )

such that ∂∗p+1(d∇(Lp(σ))) = 0 for every σ ∈ Γ(Hp).
(18)

These properties and constructions – usually termed “BGG machinery” – lead
to the sequence (actually complex in the locally flat case) of invariant differential
operators Dp,

Dp : Γ(Hp)→ Γ(Hp+1), Dp := Πp+1 ◦ d∇ ◦ Lp. (19)

Note only the first BGG-operator D0 is overdetermined and we want to find
an invariant prolongation of the systems D0(σ) = 0 on σ ∈ Γ(H0). (Here D0 = ψ
from (15) for the bundle V as in Section 4.1.) Henceforth we assume p = 0.
Note the prolongation property from the locally flat case (cf. beginning of Section
5) is lost as generally L1 ◦ D0 6= ∇V ◦ L0. Thus D0(σ) = 0 does not generally
imply ∇VL0(σ) = 0. In more detail, the left hand side of the inequality is in
the kernel of ∂∗2 ◦ d∇ according to (18) but this does not generally hold for the
right hand side. It gives us a hint, however, as the right hand side leads to
(∂∗2 ◦ d∇ ◦ ∇V ◦ L0)(σ) = ∂∗2ΩV (L0(σ)) where ΩV is the curvature of ∇V . This
vanishes in the locally flat case (because ΩV = 0) and requiring this in general – for

a new tractor connection ∇̃V with the curvature Ω̃V – one finds the construction
below.

Following the approach in [23], we introduce certain class of (nonnormal)
tractor connections on V as modifications of ∇V . There are two conditions
on such modification maps Φ ∈ E1(EndV ). First, Φ is homogeneous of degree
≥ 1 with respect to the natural filtrations on TM and V , for which we write
Φ ∈

(
E1(EndV )

)
1. (This ensures that if ∇V is replaced by ∇V + Φ in (19), we re-

cover the original operator D0.) Second, we require that for any section s ∈ Γ(V )
we have that Φ(s) ∈ im ∂∗2 ⊆ E1(V ). (This guarantees that if ∇V is replaced by
∇V + Φ in (18), the BGG-splitting L0 is unchanged.) The latter condition can
be rewritten as Φ ∈ im (∂∗V ⊗ IdV ∗) ⊆ E1(V ⊗ V ∗) where ∂∗V denotes ∂∗2 acting on
E2(V ) only. Thus we arrive at a class of admissible tractor connections

C =
{
∇V + Φ | Φ ∈ im (∂∗V ⊗ IdV ∗) ∩

(
E1(EndV )

)
1
}
.
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The main theorem of [23] is then

Theorem 6 (Theorem 1.2 from [23]) There exists a uni-

que tractor connection ∇̃V ∈ C on V characterized by the
property (∂∗V ⊗ IdV ∗)(Ω̃

V ) = 0 where Ω̃V is the curvature of

∇̃V .

This implies ∇̃V ◦ L0 = L1 ◦ D0 because now both sides are in the kernel of
both ∂∗1 and ∂∗2 ◦ d∇̃ (thus both sides are equal according to (18) and uniqueness

of L0). Therefore ∇̃V gives a prolongation of the first BGG operator D0 in the
sense that Π0 and L0 from (18) provide the bijective correspondence

{σ ∈ Γ(H0) | D0(σ) = 0} 1−1←→ {s ∈ Γ(V ) | ∇̃V s = 0}.

We say that ∇̃V is the tractor prolongation connection on V . Finally note there
is an analogue of the equality ∇̃V ◦ L0 = L1 ◦D0 for higher operators Dp in the
BGG sequence, see [23] for detail.

Above we stated only existence of the prolongation connection ∇̃V . In fact,
there is also an iterative construction [23] of the form

0

∇V := ∇V , ∇̃V :=
s

∇V and
i

∇V =
i−1

∇ V + Φi ∈ C, 1 ≤ i ≤ s

where Φi = ai
(
∂∗V ⊗ IdV ∗

)i−1

Ω V ∈ C, ai ∈ R
(20)

i.e. Φi is computed from the curvature
i−1

Ω V of
i−1

∇ V . Moreover, the upper bound
for the number of iteration steps s is the number of irreducible subquotients of
V . That is, complexity of the construction of ∇̃V grows with the dimension of V .
We shall illustrate the difference between ∇V and ∇̃V on two simple conformal
examples in the next section.

Finally note the curvature Ω̃V essentially captures information about (non)exis-

tence of solutions of D0. The point is that if D0(σ) = 0 then Ω̃V (L0(σ)) = 0 hence

a suitably defined ‘determinant’ of Ω̃V must vanish. Overdetermined operators
generically do not have any solutions hence the curvature Ω̃V provides an algebraic
test for (otherwise difficult) problem of existence of solutions of D0.

5.2 Prolongation connection in conformal geometry

Henceforth we shall consider the conformal manifold (M, [g]). First note that it

easily follows from (20) that ∇T = ∇̃T where T is the standard conformal tractor
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bundle and the same is true for the spinor tractor bundle. Moreover, ∇̃V differs
from ∇V for all remaining tractor bundles V .

Next we put V := A = Λ2T . In this case, we obtain ∇̃V = ∇V + Φ where
Φ(s) = −1

2
ιΠ(s)Ω

V ∈ E1(A) for s ∈ Γ(A). Here ιΠ0(s) inserts the vector field
Π0(s) ∈ Γ(TM) into the curvature ΩV . This case is known also by [8]. Note
solutions of D0 are conformal Killing fields in this case.

Our next example is the bundle V = Λ3T . The projecting slot is the quotient
H0 = Λ2T ∗M [3] of V and solutions of D0 in this case are conformal Killing 2-
forms σ ∈ Γ(H0). An invariant prolongation in this case was solved already in

[19] in a slightly different way (for a different splitting operator). The form ∇̃V

in our setting is presented in [24]. This is already rather complicated so we shall
restrict to the dimension n = 4 and the tractor subbundle V+ ⊆ V of self-adjoint
tractor 3-forms. (Note dim T = 6 for n = 4.) Then σ ∈ Γ(H0) = Γ(Λ2

+T
∗M [3]) is

a self-adjoint 2-form. Employing abstract index notation, we have ∇̃V
c = ∇V

c + Φc

where, for s ∈ Γ(V+), we have

s=




σa1a2
µa0a1a2 |νa
ρa1a2


∈




E[a1a2][3]
E[a0a1a2][3] | Ea[1]
E[a1a2][1]


, Φc(s)=




0
−1

4
Wc

r
[a1a2σa0]r |−1

4
Wca

rsσrs
βa1a2




where βa1a2 = 1
4

(
4Yc

r
[a1σa2]r+gc[a1Y

rs
a2]σrs+2Yc[a1

rσa2]r−Ya1a2rσcr+2Wc[a1
rsµa2]rs+

Wc
r
a1a2νr

)
.

The modification Φc simplifies on half-flat conformal four manifolds. In par-
ticular, assuming (M, [g]) is anti-self-adjoint, the result is

∇̃V
c s = ∇V

c s+




0
0 | 0

−Yc(pa1)σ
p
a2 + Yc(pa2)σ

p
a1 + 1

2
Wc

p
a1a2νp


 .

Finally note solutions of first BGG operators often encode additional geomet-
rical structure. For example, self-adjoint conformal Killing 2-forms σa1a2 discussed
above correspond to Kähler metrics in the conformal class [14]. Another impor-
tant case is V = T where nonvanishing solutions of D0 yield Einstein metrics in
the conformal class [3]. Finally, the problem of metrizability of AHS manifolds
(i.e. existence of a metrizable compatible affine connection on M) is also closely
related to solutions of suitable first BGG operators, cf. [28] and the related parts
of [24] for the case of projective structures.
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[10] A. Čap, J. Slovák, Parabolic geometries I: Background and general the-
ory. Mathematical Surveys and Monographs 154. Providence, RI: American
Mathematical Society (AMS), 628 pp.
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[34] J. Šilhan, Conformally invariant quantization – Towards the complete clas-
sification. Diff. Geom. Appl., 33 (2014), suppl., 162–176.

[35] M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS5.
Nuclear Physics B, Vol. 616 (2001), Issues 12, 106-162.

30



6 Reprints of articles

The previous survey of author’s results is based on six articles which are presented
in the remaining part of the habilitation. In the list below, numbers in square
brackets refer to References and the order follows the structure of the habilitation.
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Abstract

We construct an explicit scheme to associate to any potential symbol an operator acting between sections
of natural bundles (associated to irreducible representations) for a so-called AHS-structure. Outside of a
finite set of critical (or resonant) weights, this procedure gives rise to a quantization, which is intrinsic to
this geometric structure. In particular, this provides projectively and conformally equivariant quantizations
for arbitrary symbols on general (curved) projective and conformal structures.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a smooth manifold M , two vector bundles E and F over M and a linear differential
operator D : Γ (E) → Γ (F), where Γ ( ) indicates the space of smooth sections. If D is of order
at most k, then it has a well-defined (kth order) principal symbol σD , which can be viewed as
a vector bundle map SkT ∗M ⊗ E → F or as a smooth section of the vector bundle SkT M ⊗

* Corresponding author.
E-mail addresses: Andreas.Cap@esi.ac.at (A. Čap), silhan@math.muni.cz (J. Šilhan).
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E∗ ⊗ F . Here T M and T ∗M are the tangent respectively cotangent bundle of M , E∗ is the
bundle dual to E, and Sk denotes the kth symmetric power.

A quantization on M is a right inverse to the principal symbol map. This means that to each
smooth section τ of the bundle SkT M ⊗ E∗ ⊗ F , one has to associate a differential operator
Aτ : Γ (E) → Γ (F) of order k with principal symbol τ . Note that operators of order 0 coincide
with their principal symbols, so there is a unique possible quantization in order 0. Given any kth
order operator D with principal symbol τ , the difference D −Aτ is of order k − 1. Iterating this,
we conclude that, having a quantization in each order � k, one actually obtains an isomorphism
between the space Diff k(E,F ) of differential operators Γ (E) → Γ (F) of order at most k and
the space of smooth sections of the bundle

⊕k
i=0 SiT M ⊗ E∗ ⊗ F .

A classical example of a quantization is provided by the Fourier transform for smooth func-
tions on Rn. However, it is well known that (even for E = F = M × R) there is no canonical
quantization on a general manifold M , but one has to make additional choices. For our purposes,
the most relevant example is to choose linear connections on the vector bundles E and T M .
Having done this, one obtains induced linear connections on duals and tensor products of these
bundles, and we will denote all these connections by ∇ . For a smooth section s of E, one can
then form the k-fold covariant derivative ∇ks, which is a section of

⊗k
T ∗M ⊗E. Symmetrizing

in the T ∗M entries, we obtain a section ∇(k)s of SkT ∗M ⊗ E. Viewing a symbol τ as a bundle
map SkT ∗M ⊗ E → F , we can simply put Aτ (s) := τ(∇(k)s). Clearly this defines a differential
operator Aτ of order k and it is well known that its principal symbol is τ , so we have obtained a
quantization in this way.

This provides a link to geometry. Suppose that M is endowed with some geometric structure
which admits a canonical connection. Then one obtains quantizations for all natural bundles
associated to this structure. The classical example of this situation is the case when (M,g) is
a Riemannian manifold. Then the natural bundles are tensor and spinor bundles, and on each
such bundle one has the Levi-Civita connection. Hence the above procedure leads to a natural
quantization (in the sense that it is intrinsic to the Riemannian structure) for any pair E and F of
natural vector bundles.

At this point there arises the question whether weaker geometric structures, which do not
admit canonical connections, still do admit natural quantizations. This problem has been orig-
inally posed in [15] and has been intensively studied since then. The examples above naturally
lead to the two geometric structures for which this problem has been mainly considered. On
the one hand, one may replace a single linear connection on T M by a projective equivalence
class of such connections. Here two connections are considered as equivalent if they have the
same geodesics up to parametrization. On the other hand, the most natural weakening of Rie-
mannian metrics is provided by conformal structures. Here one takes an equivalence class of
(pseudo-)Riemannian metrics which are obtained from each other by multiplication by positive
smooth functions.

Projective and conformal structures fit into the general scheme of so-called AHS-structures.
These are geometric structures which admit an equivalent description by a canonical Cartan
connection modelled on a compact Hermitian symmetric space G/P , where G is semisimple
and P ⊂ G is an appropriate parabolic subgroup. These geometries and the more general class
of parabolic geometries have been studied intensively during the last years, and several striking
results have been obtained, see e.g. [8]. In particular, an efficient differential calculus for these
structures based on so-called tractor bundles has been worked out in [4].

This general point of view has shown up in the theory of equivariant quantizations already.
Namely, it turns out that the homogeneous space G/P always contains a dense open subset (the
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big Schubert-cell) which is naturally diffeomorphic to Rn. While the G-action on G/P cannot
be restricted to this subspace, one obtains a realization of the Lie algebra g of G as a Lie algebra
of vector fields on Rn. For the homogeneous model G/P and geometries locally isomorphic to
it, naturality of a quantization is then equivalent to equivariancy for the action of this Lie al-
gebra of vector fields. In many articles, the question of quantizations naturally associated to a
projective and/or conformal structure is posed in this setting. Also, the algebras corresponding
to general AHS-structures have been studied in this setting under the name “IFFT-equivariant
quantizations”, see [1]. It should be pointed out however, that these methods only apply to ge-
ometries locally isomorphic to G/P (e.g. to locally conformally flat conformal structures). As it
is well known from the theory of linear invariant differential operators, passing from the locally
flat category to general structures is a very difficult problem.

Most of the work on natural quantizations only applies to operators on sections of line bun-
dles (density bundles). It was only recently that the methods for projective structures have been
extended to general natural vector bundles in [12]. The construction there uses the Thomas–
Whitehead (or ambient) description of projective structures, which is an equivalent encoding of
the canonical Cartan connection for projective structures. This approach is only available in the
projective case, though. As mentioned in [12], there is hope to use the Fefferman–Graham am-
bient metric for conformal structures to find conformally invariant quantizations, but there are
several immediate problems with this approach. For the other AHS-structures, there is no clear
analog of the ambient description.

It should be mentioned that the results for projective structures have also been obtained using
the canonical Cartan connection, see [16]. After this article was essentially completed, we learned
about the recent preprint [17], in which the Cartan approach is extended to prove existence of a
natural quantization for conformal structures and it is claimed that the method further extends to
all AHS-structures.

In this article, we use the recent advances on invariant calculi for parabolic geometries to
develop a scheme for constructing equivariant quantizations. This scheme is explicit and uniform,
it applies to all AHS-structures and to all (irreducible) natural bundles for such structures. As it
is known from the special cases studied so far, equivariant quantizations do not always exist, so
our scheme does not always lead to an equivariant quantization.

To formulate the result more precisely, we need a bit more background. It turns out that for any
AHS-structure there is a family of natural line bundles E[w] parametrized by a real number w,
the so-called density bundles. Any natural bundle E can be twisted by forming tensor products
with density bundles to obtain bundles E[w] := E ⊗ E[w]. (For conformal structures, this free
parameter is known as “conformal weight”.) Doing this to the target bundle of differential opera-
tors, we can view a section τ ∈ Γ (SkT M ⊗E∗ ⊗F ⊗E[δ]) as the potential symbol of an operator
Γ (E) → Γ (F [δ]). We first universally decompose the bundle of symbols into a finite direct sum
of subbundles. On the level of sections, we write this decomposition as τ = ∑

i τi . Given such a
section, our scheme constructs a differential operator Aτ : Γ (E) → Γ (F [δ]) for any choice of
weight δ. The principal symbol of Aτ is

∑
i γiτi for real numbers γi which only depend on i,

and δ (and not on τ or on the manifold in question). We prove that each γi is non-zero except
for finitely many values of δ. Whenever all γi are non-zero, we obtain a natural quantization by
mapping τ to A∑

i γ −1
i τi

.

Our method does not only lead to an abstract proof that the set of critical weights (i.e. of
weights δ for which some γi vanishes) is finite. We also get general information on the number
and size of critical weights. In each concrete example, one can determine the set of critical
weights explicitly, and this needs only finite dimensional representation theory.
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We should mention that the developments in this article are closely related to the results in
the recent thesis [14] of J. Kroeske, in which the author systematically constructs bilinear natural
differential operators for AHS-structures and, more generally, for parabolic geometries.

2. AHS-structures and invariant calculus

In this section we review basic facts on AHS-structures and invariant differential calculus for
these geometries. Our basic references are [18,6,7].

2.1. |1|-graded Lie algebras and first order structures

The starting point for defining an AHS-structure is a real simple Lie algebra g endowed with
a so-called |1|-grading, i.e. a decomposition g = g−1 ⊕ g0 ⊕ g1, such that [gi ,gj ] ⊂ gi+j , where
we agree that g� = 0 for � /∈ {−1,0,1}. The classification of such gradings is well known, since
it is equivalent to the classification of Hermitian symmetric spaces. We put p := g0 ⊕ g1 ⊂ g. By
the grading property, p is a subalgebra of g and g1 is a nilpotent ideal in p.

Given a Lie group G with Lie algebra g, there are natural subgroups G0 ⊂ P ⊂ G corre-
sponding to the Lie subalgebras g0 ⊂ p ⊂ g. For P one may take a subgroup lying between
the normalizer NG(p) of p in G and its connected component of the identity. Then G0 ⊂ P is
defined as the subgroup of all elements whose adjoint action preserves the grading of g. In par-
ticular, restricting the adjoint action to g−1, one obtains a representation G0 → GL(g−1). This
representation is infinitesimally injective, so it makes sense to talk about first order G-structures
with structure group G0 on smooth manifolds of dimension dim(g−1).

By definition, such a structure is given by a smooth principal bundle p : G0 → M with
structure group G0, such that the associated bundle G0 ×G0 g−1 is isomorphic to the tangent
bundle T M . It turns out that the Killing form on g induces a G0-equivariant duality between g−1
and g1, so G0 ×G0 g1 ∼= T ∗M . Using this, one can realize arbitrary tensor bundles on M as asso-
ciated bundles to G0. More generally, any representation of G0, via forming associated bundles,
gives rise to a natural vector bundle on manifolds endowed with such a structure. It turns out that
G0 is always reductive with one-dimensional center. Hence finite dimensional representations
of G0 on which the center acts diagonalizably (which we will always assume in the sequel) are
completely reducible, i.e. they split into direct sums of irreducible representations.

The one-dimensional center of G0 leads to a family of natural line bundles. For w ∈ R, we can
define a homomorphism G0 → R+ by mapping g ∈ G0 to |det(Ad−(g))|w

n , where n = dim(g−1)

and Ad−(g) : g−1 → g−1 is the restriction of the adjoint action of g. This evidently is a smooth
homomorphism, thus giving rise to a one-dimensional representation R[w] of G0. It is easy to
see that R[w] is non-trivial for w 
= 0. (The factor 1

n
is included to get the usual normalization in

the case of conformal structures.) The corresponding associated bundle will be denoted by E[w],
and adding the symbol [w] to the name of a natural bundle will always indicate a tensor product
with E[w]. Using the convention that 1-densities are the objects which can be naturally integrated
on non-orientable manifolds, E[w] is by construction the bundle of (−w

n
)-densities. In particular,

all the bundles E[w] are trivial line bundles, but there is no canonical trivialization for w 
= 0.

2.2. Canonical Cartan connections and AHS-structures

The exponential mapping restricts to a diffeomorphism from g1 onto a closed normal Abelian
subgroup P+ ⊂ P such that P is the semidirect product of G0 and P+. Hence G0 can also
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naturally be viewed as a quotient of P . In particular, given a principal P -bundle G → M , the sub-
group P+ acts freely on G, and the quotient G/P+ is naturally a principal bundle with structure
group G0. Next, suppose that there is a Cartan connection ω ∈ Ω1(G,g) on the principal bun-
dle G. Then the g−1-component of ω descends to a well-defined one-form θ ∈ Ω1(G/P+,g−1),
which is G0-equivariant and strictly horizontal. This means that (G/P+ → M,θ) is a first order
structure with structure group G0. In this sense, any Cartan geometry (p : G → M,ω) of type
(G,P ) has an underlying first order structure with structure group G0. Conversely, one can talk
about extending a first order structure to a Cartan geometry.

It turns out (see e.g. [7]) that, for almost all choices of (G,P ), for any given first order
structure with structure group G0 there is a unique (up to isomorphism) extension to a Cartan
geometry of type (G,P ), for which the Cartan connection ω satisfies a certain normalization con-
dition. This is usually phrased as saying that such structures admit a canonical Cartan connection.
The main exception is g = gl(n+1,R) with a |1|-grading such that g0 = gl(n,R) and g±1 ∼= Rn.
For an appropriate choice of G, the adjoint action identifies G0 with GL(g−1) = GL(n,R). A first
order structure for this group on a manifold M is just the full linear frame bundle of M and hence
contains no information. In this case, an extension to a normal Cartan geometry of type (G,P )

is equivalent to the choice of a projective equivalence class of torsion-free connections on the
tangent bundle T M , i.e. to a classical projective structure.

Normal Cartan geometries of type (G,P ) as well as the equivalent underlying structures
(i.e. classical projective structures respectively first order structures with structure group G0) are
often referred to as AHS-structures. AHS is short for “almost Hermitian symmetric”. To explain
this name, recall that the basic example of a Cartan geometry of type (G,P ) is provided by the
natural projection G → G/P and the left Maurer–Cartan form as the Cartan connection. This
is called the homogeneous model of geometries of type (G,P ). Now the homogeneous spaces
G/P for pairs (G,P ) coming from |1|-gradings as described above, are exactly the compact
irreducible Hermitian symmetric spaces.

2.3. Natural bundles and the fundamental derivative

Via forming associated bundles, any representation of the group P gives rise to a natural bun-
dle for Cartan geometries of type (G,P ). As we have seen above, P is the semidirect product
of the reductive subgroup G0 and the normal vector subgroup P+, so its representation theory is
fairly complicated. Via the quotient homomorphism P → G0, any representation of G0 gives rise
to a representation of P . It turns out that the representations of P obtained in this way are exactly
the completely reducible representations, i.e. the direct sums of irreducible representations. Cor-
respondingly, we will talk about completely reducible and irreducible natural bundles on Cartan
geometries of type (G,P ). Consider a Cartan geometry (p : G → M,ω) with underlying struc-
ture (p0 : G0 → M,θ) and let V be a representation of G0, which we view as a representation
of P via the quotient homomorphism. Then by definition, the subgroup P+ ⊂ P acts trivially on
V and since G0 = G/P+, we can naturally identify G ×P V with G0 ×G0 V . Hence completely
reducible bundles can be easily described in terms of the underlying structure.

There is a second simple source of representations of P , which leads to an important class
of natural bundles. Namely, one may restrict any representation of G to the subgroup P . The
corresponding natural vector bundles are called tractor bundles, their general theory is developed
in [4]. The most important tractor bundle is the adjoint tractor bundle. For a Cartan geometry
(p : G → M,ω) it is defined by AM := G ×P g, so it is the associated bundle with respect to the
restriction of the adjoint representation of G to P . Now the P -invariant subspaces g1 ⊂ p ⊂ g

36
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give rise to a filtration A1M ⊂ A0M ⊂ AM of the adjoint tractor bundle by smooth subbundles.
By construction, A1M ∼= T ∗M and since g/p ∼= g−1 we see that AM/A0M ∼= T M . We will
write Π : AM → T M for the resulting natural projection. Hence the adjoint tractor bundle has
the cotangent bundle as a natural subbundle and the tangent bundle as a natural quotient.

The Killing form defines a G-invariant, non-degenerate bilinear form on g. It turns out that g1
is the annihilator of p with respect to the Killing form, which leads to duality with g/p ∼= g−1 as
observed above. On the level of associated bundles, we obtain a natural non-degenerate bilinear
form on the adjoint tractor bundle AM , which thus can be identified with the dual bundle A∗M .
Under this pairing, the subbundle A1M is the annihilator of A0M . The resulting duality between
A1M and AM/A0M is exactly the duality between T ∗M and T M .

The adjoint tractor bundle gives rise to a basic family of natural differential operators for
AHS-structures (and more generally for parabolic geometries). These have been introduced in
[4] under the name “fundamental D-operators”, more recently, the name fundamental derivative
is commonly used. Let us start with an arbitrary representation V of P and consider the cor-
responding natural bundle E := G ×P V → M for a geometry (p : G → M,ω). Then smooth
sections of this bundle are in bijective correspondence with smooth maps f : G → V , which
are P -equivariant. In the special case V = g of the adjoint tractor bundle, we can then use the
trivialization of T G provided by the Cartan connection ω to identify P -equivariant functions
G → g with P -invariant vector fields on G. For a section s ∈ Γ (AM), we can form the corre-
sponding vector field ξ ∈ X(G) and use it to differentiate the equivariant function f : G → V

corresponding to a section σ ∈ Γ (E). The result will again be equivariant, thus defining a
smooth section Dsσ ∈ Γ (E). Hence we can view the fundamental derivative as an operator
D = DE : Γ (AM) × Γ (E) → Γ (E). The basic properties of this operator as proved in Sec-
tion 3 of [4] are:

Proposition 1. Let V be a representation of P and let E = G×P V be the corresponding natural
bundle for an AHS-structure (p : G → M,ω). Then we have:

(1) D : Γ (AM) × Γ (E) → Γ (E) is a first order differential operator which is natural, i.e. in-
trinsic to the AHS-structure on M .

(2) D is linear over smooth functions in the AM-entry, so we can also view σ �→ Dσ as an
operator Γ (E) → Γ (A∗M ⊗ E).

(3) For s ∈ Γ (AM), σ ∈ Γ (E), and f ∈ C∞(M,R), we have the Leibniz rule Ds(f σ) =
(Π(s) · f )σ + f Dsσ , where Π : Γ (AM) → Γ (T M) is the natural tensorial projection.

(4) For a second natural bundle F = G ×P W , a P -equivariant map V → W , and the corre-
sponding bundle map Φ : E → F , the fundamental derivatives on E and F are related by
DF

s (Φ ◦ σ) = Φ ◦ DE
s σ for all s ∈ Γ (AM) and σ ∈ Γ (E).

The naturality statement in (4) justifies denoting the fundamental derivatives on all natu-
ral bundles by the same letter. Since there is no restriction on the bundle E, the fundamental
derivative in the form of part (2) can evidently be iterated. For σ ∈ Γ (E) we can form Dσ ,
D2σ = D(Dσ) and inductively Dkσ ∈ Γ (

⊗k A∗M ⊗ E).

2.4. Curved Casimir operators

Curved Casimir operators form another basic set of natural differential operators defined on
AHS-structures. They have been introduced in [9] in the general context of parabolic geometries.
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That article contains all the facts about curved Casimir operators we will need, as well as the
general construction for splitting operators that we will use below.

As above, we start with a representation V of P and consider the corresponding natural vector
bundle E = G ×P V for an AHS-structure (p : G → M,ω). As noticed above, the composition
of two fundamental derivatives defines an operator D2 : Γ (E) → Γ (

⊗2 A∗M ⊗ E). From 2.3
we know that the Killing form on g induces a non-degenerate bilinear form on AM . Using this
to identify AM with A∗M , we also get a natural bilinear form B on A∗M . This can be used to
define a bundle map B ⊗ id : ⊗2 A∗M ⊗E → E. Now one defines the curved Casimir operator
C = CE : Γ (E) → Γ (E) by C(σ ) := (B ⊗ id) ◦ D2σ .

Part (4) of Proposition 1 easily implies (compare with Proposition 2 of [9]) that for another
natural vector bundle F and a bundle map Φ : E → F coming from a P -equivariant map be-
tween the inducing representations, one gets CF (Φ ◦ σ) = Φ ◦ CE(σ ). This is the justification
for denoting all curved Casimir operators by the same symbol.

From the construction it is clear that C is a natural differential operator of order at most 2.
However, it turns out that C actually always is of order at most one. Moreover, on sections of
bundles induced by irreducible representations, the operator C acts by a scalar which can be
computed from representation theory data. One can associate to any irreducible representation
of g0 a highest and a lowest weight by passing to complexifications, see Section 3.4 of [9]. The
weights are functionals on the Cartan subalgebra h of the complexification gC of g, which at the
same time is a Cartan subalgebra for (g0)C. Recall that the Killing form of g induces a positive
definite inner product on the real space of functionals on h spanned by possible weights for finite
dimensional representations. Denoting this inner product by 〈 , 〉 and the corresponding norm
by ‖ ‖, the following result is proved as Theorem 1 in [9].

Proposition 2. Let V be a representation of P and let E = G×P V be the corresponding natural
vector bundle for an AHS-structure (p : G → M,ω). Then:

(1) C : Γ (E) → Γ (E) is a natural differential operator of order at most one.
(2) If the representation V is irreducible of lowest weight −λ, then C acts on Γ (E) by multipli-

cation by ‖λ‖2 + 2〈λ,ρ〉, where ρ is half the sum of all positive roots of gC.

3. The quantization scheme

Throughout this section, we fix a pair (G,P ), two irreducible representations V and W of G0
with corresponding natural bundles E and F , as well as an order k > 0. Given these data, we try
to construct a quantization for kth order symbols of operators mapping sections of E to sections
of F [δ] for δ ∈ R.

The basic idea for the construction is very simple. The bundle of symbols in this situation is
SkT M ⊗ E∗ ⊗ F [δ]. We know from 2.3 that T M naturally is a quotient of the adjoint tractor
bundle AM , so the bundle of symbols is a quotient of SkAM ⊗ E∗ ⊗ F [δ]. Using the general
machinery of splitting operators, we can associate to a symbol a section of the latter bundle. But
such a section can be interpreted as a bundle map SkA∗M ⊗E → F [δ], so we can apply it to the
values of the symmetrized k-fold fundamental derivative of sections of E.

3.1. Some properties of the fundamental derivative

To carry out this idea, we first have to derive, for some fixed k, some properties of the
iterated fundamental derivative Dk and its symmetrization D(k) : Γ (E) → Γ (WM), where
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WM := SkA∗M ⊗ E. Recall from 2.3 that AM admits a natural filtration of the form A1M ⊂
A0M ⊂ A−1M := AM . Since elements of WM can be interpreted as k-linear, symmetric maps
(AM)k → E, we get an induced filtration of the bundle WM . We first take the natural fil-
tration of SkAM , with components indexed from −k to k, and then define W�M to be the
annihilator of the filtration component with index −� + 1. Explicitly, this means that W�M

consists of all maps Ψ ∈ WM such that Ψ (s1, . . . , sk) = 0 for arbitrary elements sj ∈ Aij M ,
provided that i1 + · · · + ik > −�. Then by definition, we get W�+1M ⊂ W�M for each �,
Wk+1M = 0, and W−kM = WM . Moreover, a map Φ ∈ WkM by definition vanishes if at
least one of its entries is from A0M ⊂ AM . Hence this factors to a k-linear symmetric map on
copies of AM/A0M ∼= T M , and we get an isomorphism WkM ∼= SkT ∗M ⊗ E. We will denote
by ι : SkT ∗M ⊗ E →WM the corresponding natural inclusion.

Proposition 3. (1) The symmetrized k-fold fundamental derivative D(k) : Γ (E) → Γ (WM) has
values in the space of sections of the subbundle W0M .

(2) Consider any principal connection on the bundle G0 → M , denote by ∇ all the induced
connections on associated vector bundles, by ∇k the k-fold covariant derivative, and by ∇(k) its
symmetrization.

Then the operator Γ (E) → Γ (WM) given by ϕ �→ Dkϕ − ι(∇kϕ) has order at most k − 1.
In particular, D(k)ϕ is the sum of ι(∇(k)ϕ) and terms of order at most k − 1 in ϕ.

Proof. We will proceed by induction on k. Recall that there is a family of preferred connec-
tions on the bundle G0 which is intrinsic to the AHS-structure, see [6,4]. Any such connection
also determines a splitting of the filtration of the adjoint tractor bundle, i.e. an isomorphism
AM → T ∗M ⊕ End0(T M) ⊕ T M , where End0(T M) = G0 ×G0 g0, which behaves well with
respect to the filtration. In particular, the last component is given by the natural projection
Π : AM → T M , while the first component restricts to the natural isomorphism A1M → T ∗M .
Fixing one preferred connection, the difference to any other principal connection on G0 is
given by a tensorial operator, so it suffices to prove part (2) for the chosen preferred connec-
tion.

A formula for the action of the fundamental derivative on tensor bundles in terms of ∇ and
this splitting is derived in Section 4.14 of [4]. The argument used there applies to all bundles
constructed from completely reducible subquotients of tractor bundles, and hence to all bundles
associated to G0. If s ∈ Γ (AM) corresponds to (ψ,Φ, ξ) in the splitting determined by ∇ (so in
particular ξ = Π(s)), then Dsϕ = ∇ξ ϕ − Φ • ϕ, where • : End0(T M) × E → E is the tensorial
operation induced by the infinitesimal action g0 × V → V . Now s ∈ Γ (A1M) if and only if
ξ = 0 and Φ = 0, so Dsϕ = 0 in this case. On the other hand, ξ = Π(s) so (Dϕ − ι(∇ϕ))(s) =
Dsϕ − ∇Π(s)ϕ = Φ • ϕ is tensorial. Hence we have proved (1) and (2) for k = 1.

Next observe that naturality of the fundamental derivative implies that for s0, . . . , sk ∈
Γ (AM) we obtain the Leibniz rule

(
Dk+1ϕ

)
(s0, . . . , sk) = Ds0

(
Dkϕ(s1, . . . , sk)

) −
k∑

i=1

(
Dkϕ

)
(s1, . . . ,Ds0si , . . . , sk), (∗)

compare with Proposition 3.1 of [4]. Assuming inductively that part (2) holds for k, the sec-
ond summand is evidently of order at most k in ϕ. Moreover, the first summand is given by
∇Π(s0)(∇kϕ(Π(s1), . . . ,Π(sk))) plus terms of order at most k − 1 in ϕ which immediately im-
plies (2).
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To prove (1), observe Dkϕ ∈ Γ (W0M) if and only if Dkϕ(s1, . . . , sk) = 0 provided that at
least r of the sections si have values in A0M and at least k − r + 1 of them even have values in
A1M . We assume this inductively and prove the corresponding property of Dk+1ϕ. Hence we
take sections s0, . . . , sk , and assume that r ′ of them have values in A0M and k − r ′ +2 even have
values in A1M .

If s0 has values in A1M , then Ds0 acts trivially on Γ (E) as well as on sections of A1M , it
maps sections of AM to sections of A0M and sections of A0M to sections of A1M . Hence the
first summand of the right-hand side of (∗) vanishes. In the second term of this right-hand side,
only summands in which si does not have values in A1M can provide a non-zero contribution.
If si ∈ Γ (A0M), then in the corresponding summand we have r ′ − 1 sections of A0M , and
k−r ′+2 = k−(r ′−1)+1 of them have values in A1M , so the corresponding summand vanishes
by inductive hypothesis. If si is not a section of A0M , then in the corresponding summand we
have r ′ sections of A0M , and k − r ′ +1 of them have values in A1M , so again vanishing follows
by induction.

If s0 has values in A0M but not in A1M , then we only need to take into account that, acting
on sections of AM , Ds0 preserves sections of each filtration component. This shows that in each
of the summands in the right-hand side of (∗), there are r ′ − 1 sections of A0M inserted into
Dkϕ, and k − r ′ + 2 = k − (r ′ − 1) + 1 of them have values in A1M . Hence again vanishing of
each summand follows by induction.

Finally, if s0 does not have values in A0M , then we again need only that Ds0 preserves sections
of each of the filtration components of AM . This shows that in each summand of the right-
hand side of (∗), we have r ′ sections of A0M and k − r ′ + 2 of them have values in A1M .
Thus vanishing of each summand again follows by induction, and the proof of (1) follows by
symmetrization. �
3.2. The splitting operators

According to the idea described in the beginning of Section 3, we should next, for fixed k,
consider the bundle SkT M ⊗E∗ ⊗F [δ] of symbols as a quotient of the bundle ṼM := SkAM ⊗
E∗ ⊗ F [δ]. However, in view of Proposition 3, we can already improve the basic idea. As we
have noted in 3.1, the bundle SkAM carries a natural filtration. Taking the tensor product with
E∗ and F [δ], we obtain a filtration of the bundle ṼM of the form

ṼkM ⊂ · · · ⊂ Ṽ0M ⊂ · · · ⊂ Ṽ−kM = ṼM.

As we have observed in the beginning of Section 3, there is a well-defined bilinear pairing ṼM ×
WM → F [δ]. By definition of the filtration on WM , this factorizes to a bilinear pairing of
VM × W0M → F [δ], where VM := ṼM/Ṽ1M . We denote all these pairings by 〈 , 〉. As we
shall see below, replacing the bundle ṼM by its quotient VM leads to a smaller set of critical
weights δ.

For the same reason, it is preferable to take a further decomposition according to irreducible
components of the bundle of symbols as follows. By construction, the filtration on SkAM is
induced by P -invariant subspaces of the representation Skg, so the filtration of ṼM comes from
a P -invariant filtration of Skg ⊗ V ∗ ⊗ W [δ]. The quotient of this space by the largest proper
filtration component by construction is Sk(g/p) ⊗ V ∗ ⊗ W [δ], which induces the bundle of
symbols. Now if we restrict to the subgroup G0 ⊂ P , then g decomposes into the direct sum
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g−1 ⊕ g0 ⊕ g1, and the filtration components are just g0 ⊕ g1 and g1. Correspondingly, the filtra-
tions on Skg and Skg ⊗ V ∗ ⊗ W [δ], viewed as G0-representations, are induced from direct sum
decompositions.

Since we have assumed that V and W are irreducible representations of P (and hence of G0),
the tensor product Sk(g/p) ⊗ V ∗ ⊗ W [δ] splits into a direct sum

⊕
i Ri of irreducible repre-

sentations of G0. Identifying g/p with g−1, we can view each Ri as a subspace in the quotient
of Skg ⊗ V ∗ ⊗ W by the P -invariant filtration component with index 1. Then for each i, we
can look at the P -module Si generated by Ri . Each Si has a P -invariant filtration with com-
pletely reducible subquotients, and the quotient of Si by the largest proper filtration component
is Ri .

Passing to associated bundles, we see that for each i, we can consider G ×P Ri as a subbundle
of the bundle SkT M ⊗ E∗ ⊗ F [δ] of symbols, and these subbundles form a decomposition
into a direct sum. In particular, any section τ of the bundle of symbols can be uniquely written
as τ = ∑

i τi of sections τi ∈ Γ (G ×P Ri). Likewise, for each i, we can view G ×P Si as a
subbundle of VM , so in particular, sections of G ×P Si can be viewed as sections of VM .

Now for each i, we denote by β0
i the eigenvalue by which the curved Casimir operator acts on

sections of the irreducible bundle G ×P Ri , see Proposition 2. Further, by β1
i , . . . , β

ni

i we denote
the different Casimir eigenvalues occurring for irreducible components in the other quotients of
consecutive filtration components of Si . Using this, we can now formulate:

Proposition 4. Let Π : VM → SkT M ⊗ E∗ ⊗ F [δ] be the natural projection and denote the in-
duced tensorial operator on sections by the same symbol. For each i define γi := ∏ni

j=1(β
0
i −β

j
i ).

Then there is a natural differential operator

L : Γ (
SkT M ⊗ E∗ ⊗ F [δ]) → Γ (VM)

such that Π(L(τ)) = ∑
i γiτi for any section τ = ∑

i τi of the bundle of symbols.

Proof. Of course for each i, mapping τ to τi ∈ Γ (G ×P Ri) defines a tensorial natural opera-
tor. The construction of splitting operators in Theorem 2 of [9] gives us, for each i, a natural
differential operator Li : Γ (G ×P Ri) → Γ (G ×P Si). This has the property that denoting by
Πi the tensorial projection in the other direction, we obtain Πi(L(τi)) = γiτi for the number γi

defined in the proposition. As we have noted above, we can naturally view sections of G ×P Si

as sections of VM , so we can simply define L(τ) := ∑
i Li(τi). �

It is easy to give an explicit description of L, since the construction of splitting operators in [9]
is explicit. Given τ , we have to choose sections si ∈ Γ (G ×P Si) ⊂ Γ (VM) such that Π(si) = τi

for all i. Then we claim that

L(τ) =
∑

i

ni∏
j=1

(
C − β

j
i

)
(si).

The product for fixed i exactly corresponds to the definition of the splitting operator from [9].
Naturality of the curved Casimir operator thus implies that each of the summands equals Li(τi),
viewed as a section of VM , and the claim follows.
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3.3. The quantization scheme

We are now ready to formulate our first main result.

Theorem 5. The map (τ,ϕ) �→ 〈L(τ),D(k)ϕ〉 defines a natural bilinear operator Γ (SkT M ⊗
E∗ ⊗ F [δ]) × Γ (E) → Γ (F [δ]).

For τ = ∑
i τi ∈ Γ (SkT M ⊗ E∗ ⊗ F [δ]), the operator Aτ : Γ (E) → Γ (F [δ]) defined by

Aτ (ϕ) := 〈L(τ),D(k)ϕ〉 is of order at most k and has principal symbol
∑

i γiτi .

Proof. Naturality of L, D(k), and the pairing 〈 , 〉 implies naturality of the bilinear operator. Now
fix τ and consider the operator Aτ . Choose any principal connection on G0 and denote by ∇
all the induced linear connections on associated vector bundles. Using Proposition 3 we see that
Aτ (ϕ) = 〈L(τ), i(∇(k)ϕ)〉 up to terms of order at mots k −1 in ϕ. Hence Aτ is of order at most k

and by the properties of the pairing 〈 , 〉, the principal symbol is obtained as the result of pairing
Π(L(τ)) ∈ Γ (SkT M ⊗E∗ ⊗F [δ]) with ∇(k)ϕ ∈ Γ (SkT ∗M ⊗E). Thus the result follows from
Proposition 4. �

Now we define a weight δ ∈ R to be critical if at least one of the γi is zero for the chosen
value of δ. For non-critical weights, our theorem immediately leads to a natural quantization:

Corollary 6. If the weight δ is not critical, then the map τ �→ A∑
i γ −1

i τi
defines a natural quan-

tization for the bundles E and F [δ].

We want to emphasize that the naturality result in the corollary in particular implies that in
the case of the homogeneous model G/P of the AHS-structure in question the quantization
is equivariant (as a bilinear map) under the natural G-action on the spaces of sections of the
bundles in question (which are homogeneous vector bundles in this case). We can restrict the
quantization to the big Schubert cell in G/P , which is diffeomorphic to Rn, n = dim(G/P ). The
G-equivariancy on G/P immediately implies that the result is equivariant for the Lie subalgebra
of vector fields on Rn formed by the fundamental vector fields for this G-action. Hence our
quantization will specialize to an equivariant quantization in the usual sense.

3.4. The set of critical weights

To complete our results, we have to prove that for any choice of bundles E and F and any
order k, the set of critical weights is finite. Verifying this is a question of finite dimensional
representation theory. In fact, we not only get an abstract proof of finiteness of the set of critical
weights, but a method to determine the set of critical weights for any given example.

In view of Proposition 4 and Theorem 5, it is clear that we have to understand the dependence
of the Casimir eigenvalues, or more precisely of the differences β0

i −β
j
i , on δ. To get a complete

understanding of the set of critical weights, one has to determine the composition series (i.e. the
structure of the quotients of iterated filtration components), of the P -modules Si . Recall from
3.2 that, as a representation of G0, Si is simply the direct sum of all the composition factors,
so essentially we have to determine the decomposition of Si into irreducible components as a
G0-module. From Proposition 2 we know how to determine the numbers β from the lowest
weights of these irreducible components. Notice that changing the weight δ corresponds to taking
a tensor product with a one-dimensional representation. In particular, this does not influence
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the basic decompositions into irreducible components, apart from the fact that each of these
components is tensorized with that one-dimensional representation. As we shall see, we can get
quite a bit of information without detailed knowledge of the decomposition into irreducibles,
using only structural information on the possible irreducible components. We start by proving a
basic finiteness result.

Theorem 7. Fix an irreducible component Ri ⊂ Skg−1 ⊗V ∗ ⊗W [δ], consider the corresponding
Casimir eigenvalue β0

i , and one of the other Casimir eigenvalues β
j
i . Then there is exactly one

value of δ for which β0
i = β

j
i . Hence there are at most ni many values for δ for which γi = 0,

and at most
∑

i ni critical weights.

Proof. Let us first make a few comments. The Casimir eigenvalues can be computed from low-
est weights, which are defined via complexification of non-complex representations and of the
Lie algebra in question. Since these complexifications do not change the decomposition into
irreducible components, we may work in the setting of complex |1|-graded Lie algebras through-
out the proof. Second, recall that for an irreducible representation of a complex semisimple Lie
algebra, the negative of the lowest weight coincides with the highest weight of the dual represen-
tation. In this way, standard results on highest weights have analogs for the negatives of lowest
weights.

As we have noted in Proposition 2, for a representation with lowest weight −λ, the Casimir
eigenvalue on sections of the corresponding induced bundle is given by ‖λ‖2 + 2〈λ,ρ〉 = 〈λ,

λ + 2ρ〉. Writing cλ for this number, the last expression immediately shows that for two weights
λ and λ′, we have

cλ′ − cλ = 2
〈
λ′ − λ,λ + ρ

〉 + ∥∥λ′ − λ
∥∥2

. (1)

We have to understand, how this is influenced by changing δ. Denoting by μ the highest weight
associated to the representation R[1], which induces the bundle E[1], the bundle E[w] corre-
sponds to the weight wμ. Moving from δ to δ + w corresponds to forming a tensor product with
E[w], and hence replacing λ by λ+wμ and λ′ by λ′ +wμ. This means that the difference of the
two weights remains unchanged, and Eq. (1) shows that

cλ′+wμ − cλ+wμ = cλ′ − cλ + 2w
〈
λ′ − λ,μ

〉
. (2)

Now by definition, the weights of the representation g are exactly the roots of g. Consequently,
any weight of Skg is a sum of k roots. Further, it is well known that the highest weight of any
irreducible component in a tensor product of two irreducible representations can be written as a
sum of the highest weight of one of the two factors and some weight of the other factor. Passing
to duals, we see that the same statement holds for the negatives of lowest weights. Thus, the
negative of the lowest weight of any irreducible component of Skg⊗V ∗ ⊗W can be written as a
linear combination of the negative of the lowest weight of an irreducible component of V ∗ ⊗ W

and at most k roots.
Now recall (see [18]) that for a complex |1|-graded Lie algebra, one can choose a Cartan

subalgebra h ⊂ g and positive roots in such a way that there is a unique simple root α0 for which
the corresponding root space is contained in g1. More precisely, for a root α, the corresponding
root space sits in gi for i = −1,0,1, where i is the coefficient of α0 in the expansion of α as
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a linear combination of simple roots. Then the center of g0 is generated by the unique element
H0 ∈ h for which α0(H0) = 1 while all other simple roots vanish on H0. The orthocomplement
of H0 in h is a Cartan subalgebra of the semisimple part of g0.

Since the semisimple part of g0 acts trivially on R[1], we conclude that μ(H) = aB(H,H0)

for some non-zero number a and all H ∈ h, where B denotes the Killing form of g. Going
through the conventions, it is easy to see that actually a < 0. By definition of the inner product,
this means that for any weight ν, we have 〈μ,ν〉 = aν(H0). Since H0 acts by a scalar on any
irreducible representation, it also acts by a scalar on all of Skg−1 ⊗ V ∗ ⊗ W . But this implies
that if −ν is the lowest weight of an irreducible component of V ∗ ⊗ W , then ν(H0) = a0 for
a fixed number a0. Consequently, if −ν is the lowest weight of an irreducible component of
the quotient of two consecutive filtrations components in VM , say the one with index � by the
one with index � + 1, ν(H0) = a0 + �. In particular, if −λ is the lowest weight of Ri , then
λ(H0) = a0 − k. Likewise if −λ′ is the lowest weight giving rise to β

j
i then λ′(H0) = a0 + � for

some � > −k. Thus we conclude that 〈λ′ − λ,μ〉 = a(k + �) < 0, and formula (2) shows that λ

and λ′ give rise to exactly one critical weight. �
Note that the proof actually leads to an explicit formulae for the critical weights. Suppose that

−λ and −λ′ are the lowest weights of irreducible components giving rise to β0
i and β

j
i , and that

the irreducible component corresponding to −λ′ sits in the quotient of the �th by the (� + 1)st
filtration component. Then formulae (1) and (2) from the proof show that the critical weight
caused by these two components is given by

δ = 2〈λ′ − λ,λ + ρ〉 + ‖λ′ − λ‖2

2〈λ′ − λ,μ〉 (3)

where μ is the highest weight of the representation R[1]. In particular, we can use this formula
to completely determine the set of all critical weights if we know all the P -representations Si

together with their composition structure.

3.5. Restrictions on critical weights

We can also get some information on the set of critical weights without this detailed knowl-
edge. For any P -module, we can look at the restriction of the P -action to G0 and the restriction of
the infinitesimal action of p to the abelian subalgebra g1. Since P is the semidirect product of G0
and exp(g1), one immediately concludes that any subspace in a representation of P , which is G0-
invariant and closed under the infinitesimal action of g1 is actually P -invariant. By construction,
the actions of elements of g1 on any P -module commute. Hence the iterated action of elements
of g1 (in the P -module Skg ⊗ V ∗ ⊗ W [δ]) on Ri defines maps S�g1 ⊗ Ri → Skg ⊗ V ∗ ⊗ W [δ].
By construction, the image sits in the filtration component with index �−k as well as in Si . Hence
we actually obtain a map

⊕k
�=0 S�g1 ⊗ Ri → Si , which is evidently G0-equivariant. In particu-

lar, the image is a G0-invariant subspace of Si and from the construction it follows immediately
that it is also closed under the infinitesimal action of g1.

The upshot of this is that any G0-irreducible component of Si also occurs in
⊕k

�=0 S�g1 ⊗Ri .

If we determine the set of all weights δ for which an irreducible component of
⊕k

�=1 S�g1 ⊗ Ri

corresponds to the same Casimir eigenvalue as Ri , then the union of these sets for all i contains
the set of all critical weights.
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We next work out more details on the set of critical weights for some examples in the case of
even-dimensional conformal structures of arbitrary signature (p, q). (This is significantly more
complicated than the case of projective structures, which is mainly considered in the literature.)
Hence G0 is the conformal group CO(p, q) and g−1 is the standard representation Rn, n =
p + q of this group, and we assume that n is even. As above, we may work in the complexified
setting, and we will use the notation, conventions and results from [5] for weights. We will fix
representations V and W and determine critical weights starting from Skg−1 ⊗V ∗ ⊗W (i.e. with
δ = 0).

Let us assume that Skg−1 ⊗ V ∗ ⊗ W contains an irreducible component Ri
∼= R[w] for

some w ∈ R. The decomposition of S�Rn∗ into irreducible components is given by S�
0Rn∗ ⊕

S�−2
0 Rn∗[−2] ⊕ S�−4

0 Rn∗[−4] ⊕ · · · , where the subscript 0 indicates the totally trace-free part.
From 3.5 we thus conclude that in any case all the irreducible components of P -module Si gen-
erated by Ri must be of the form S�Rn∗[w − 2m] for non-negative integers � and m such that
� + 2m � k.

In particular, for k = 1, the only possibility is Rn[w]. In the notation from Section 2.4 of [5],
R[w] corresponds to the weight (w|0, . . .) while Rn∗[w] corresponds to (w − 1|1,0, . . .), which
immediately shows that the corresponding critical weight is δ = −w. For k = 2, we get S2

0Rn∗[w]
and R[w − 2], which correspond to (w − 2|2,0, . . .) and (w − 2|0, . . .) and the critical weights
1 − w and 1 − w − n

2 .
For a general order k, the possible representations are (w − �|� − 2m,0, . . .) for � � k and

� − 2m � 0 and one easily verifies directly:

Proposition 8. The possible critical weights caused by an irreducible component R[w] ⊂
Skg−1 ⊗ V ∗ ⊗ W are contained in the set

{
−w − 1 + � − 2m + m(2 + 2m − n)

�
: 0 < � � k, 0 � 2m � �

}
.

We can derive an effective upper bound, above which there are no critical weights for quan-
tization in any order. This can be viewed as a vast generalization of the results in Section 3.1
of [11] on quantization of operators on functions. Observe first that it may happen that for the
representations V and W inducing E and F , the tensor product V ∗ ⊗ W itself splits into sev-
eral irreducible components. For example, if V = W , then one always has the one-dimensional
invariant subspace spanned by the identity. Given an irreducible component U ⊂ V ∗ ⊗ W and
δ ∈ R, we have Skg−1 ⊗ U [δ] ⊂ Skg−1 ⊗ V ∗ ⊗ W [δ], so one may talk about symbols of type U

of any order and any weight. Of course, one may apply the constructions from 3.1–3.3 directly
to this subspace. As an irreducible representation of g0, U [δ] has an associated lowest weight.
Using this, we can now formulate

Theorem 9. Let −λ be the lowest weight of U [δ] and assume that δ is chosen in such a way
that λ is g-dominant. Then for any order k, the weight δ is non-critical for symbols of type U . In
particular, this always holds for sufficiently large values of δ.

Proof. Let us first assume that λ is g-dominant and integral. Then there is a finite dimensional
irreducible representation Ũ of g with lowest weight −λ. We can pass to the dual Ũ∗, and look
at the p-submodule generated by a highest weight vector. It is well known that this realizes
the irreducible representation of p with highest weight λ. Passing back, we see that U [δ] can be
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naturally viewed as a quotient of Ũ . Consequently, for any k � 0, we can naturally view Skg−1 ⊗
U [δ] as quotient of the representation Skg⊗ Ũ of g. In particular, for any irreducible component
Ri ⊂ Skg−1 ⊗ U [δ] we obtain a corresponding g-invariant subset S̃i ⊂ Skg ⊗ Ũ (which can
be taken to be g-irreducible) with p-irreducible quotient Ri . It is also evident that applying the
natural map Skg ⊗ Ũ → Skg ⊗ U [δ] to S̃i and then factoring by the filtration component of
degree zero, the image has to contain the p-submodule Si generated by Ri . In particular, any
g0-irreducible component of Si also has to occur in S̃i .

But for the bundles corresponding to irreducible representations of g, the critical weights are
described in Lemma 2 of [9] in terms of the Kostant Laplacian � and the value c0 by which
the (algebraic) Casimir operator of g acts on the irreducible representation S̃i . Now c0 coincides
with the Casimir eigenvalue β0

i in our sense and hence Lemma 2 of [9] shows that β
j
i − β0

i

can be computed as twice the eigenvalue of � on the irreducible component giving rise to βi
j .

Now Kostant’s theorem from [13] in particular implies that the kernel of � on S̃i consists of Ri

(viewed as a g0-invariant subspace) only. This implies the result if λ is g-dominant and integral.
More is known about the eigenvalues of �, however. The lemma in Cartier’s remarks [10]

to Kostant’s article shows that all eigenvalues of � are non-positive. In the terminology of the
proof of Theorem 7 this means that cλ′ − cλ < 0. There we have also seen that 〈λ′ − λ,μ〉 < 0,
so formula (2) from that proof shows that cλ′+wμ − cλ+wμ < 0 for w � 0. Now if −λ is the
lowest weight of a finite dimensional irreducible representation of p, then λ is p-dominant and
p-integral. But this means that λ + wμ is g-dominant for sufficiently large values of w and
g-integral for all integral values of w, which implies all the remaining claims. �
3.6. Low order quantizations for even-dimensional conformal structures

Let us move to more complete examples in the setting from above. We will restrict to the
cases that V ∗ ⊗ W ∼= R and V ∗ ⊗ W ∼= Rn, and to orders at most three in the first case and
at most two in the second case. For V ∗ ⊗ W ∼= R, we get quantizations on density bundles,
which can be compared to available results in the literature. The case V ∗ ⊗ W ∼= Rn can be
used to understand operators mapping weighted one-forms to densities and, vice versa, mapping
densities to weighted one-forms.

We have already noted in 3.5 that the decomposition of Skg−1 is given by
⊕

��k/2 S�g−1[2�].

First order operators on densities. Here the symbol representation is g−1 ∼= Rn, so this is
irreducible and corresponds to the weight (1|1,0, . . .). Likewise, g is an irreducible represen-
tation of g, and there is only one relevant level which may produce critical weights, namely
g0 ∼= Λ2Rn[2] ⊕ R, which is the quotient of the filtration components of degrees 0 and 1. The
summands correspond to the weights (0|1,1,0, . . .)⊕(0|0, . . .) and we obtain the critical weights
−n and −2.

Second order operators on densities. The symbol representation splits into two irreducible
components R1 and R2 corresponding to the weights (2|2,0, . . .) (trace-free symbols) and
(2|0, . . .) (symbols which are pure trace, i.e. of Laplace type). Also, the representation S2g of g
is not irreducible any more, but splits into four irreducible components. One of them is a trivial
representation (corresponding to the Killing form) and one is isomorphic to Λ4Rn+2. These two
components are entirely contained in the filtration component of degree −1, so they do not con-
tribute to the quotient by the largest filtration component. One of the remaining two irreducible
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components is isomorphic to S2
0Rn+2. The quotient of this component by its intersection with

the largest filtration component is exactly R2, so all of S2 must be contained in this part. Finally,
there is the highest weight component �2g ⊂ S2g (the Cartan product of two copies of g), whose
quotient by the largest filtration component is R1. Hence S1 is contained in this component.

To determine the possible critical weights it thus suffices to analyze the composition structure
of the representations �2g and S2

0Rn+2. This can be done fairly easily using the description of
representations of g in terms of their p-irreducible quotients from Section 3 of [3], in particular
the result in Lemma 3.1 of this article. One has to use the fact that the Lie algebra cohomology
groups that occur are algorithmically computable using Kostant’s version of the Bott–Borel–Weil
theorem.

This shows that in the language of weights, the two relevant levels of �2g decompose as

(1|2,1,0, . . .) ⊕ (1|1,0, . . .),

(0|2,2,0, . . .) ⊕ (0|2,0, . . .) ⊕ (0|1,1,0, . . .) ⊕ (0|0, . . .),

and consequently, one obtains the critical weights −3, −2, −2 − n, −1 − n, (−2 − n)/2, and
(−4 − n)/2.

For the case of symbols which are pure trace, the decompositions of the level for the index −1
is irreducible corresponding to the weight (1|1,0, . . .), while the level for index zero decomposes
as (0|2,0, . . .) ⊕ (0|0, . . .). This gives rise to the critical weights −2, −1 and (−2 − n)/2.

Third order operators on densities. The analysis is closely analogous to the second order case,
we mainly include the results for comparison to [2]. The symbol representation splits into two ir-
reducible components and again these two components correspond to two of the seven irreducible
components in S3g. Namely, trace-free symbols (S3

0Rn) correspond to the highest weight com-
ponent �3g, while trace symbols (Rn[2]) correspond to the Cartan product g � S2

0Rn+2. The
relevant parts of the composition series for these two representations of g can be determined as
in the second order case. From these, one computes the critical weights. In the trace-free case,
one obtains −4, −3, −2, −4 − n, −3 − n, −2 − n, (−7 − n)/2, (−4 − n)/2, (−8 − n)/3,
(−8 − 2n)/3, (−6 − n)/3, and (−6 − 2n)/3. For trace-type symbols, we get the critical weights
−1, −2, −4, −5/2, −4/3, (−4−n)/2, (−4−n)/3, (−6−n)/3, and (−4−2n)/3. These are the
critical weights from [2], plus quite a few additional ones. We’ll comment on that in 3.7 below.

First order operators for V ∗ ⊗ W ∼= RnV ∗ ⊗ W ∼= RnV ∗ ⊗ W ∼= Rn. Here the symbol representation decomposes as

Rn ⊗ Rn = R1 ⊕ R2 ⊕ R3 = S2
0Rn ⊕ Λ2Rn ⊕ R[2],

or in weights (2|2,0, . . .) ⊕ (2|1,1,0, . . .) ⊕ (2|0, . . .). There is only one relevant level in the
composition series of g ⊗ Rn, which can be determined by decomposing the tensor product
g0 ⊗ Rn into irreducibles. In terms of weights, the result is (1|2,1,0, . . .) ⊕ (1|1,1,1,0, . . .) ⊕
2(1|1,0, . . .), so the last irreducible component occurs with multiplicity two. Decomposing the
tensor products Ri ⊗ Rn, one concludes that S1 can only contain the first and a copy of the last
irreducible components, while S3 can only contain one copy of the last irreducible component.
Consequently, there are three critical weights for skew symmetric symbols (which turn out to be
−1, −4, and −n) but only two (namely −3 and −2 − n) for symmetric symbols. For trace-type
symbols we obtain only one critical weight, namely −2, which agrees with the result from 3.5.
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Second order operators for V ∗ ⊗ W ∼= RnV ∗ ⊗ W ∼= RnV ∗ ⊗ W ∼= Rn. Here the symbol representation S2Rn ⊗Rn decom-
poses into four irreducible components, in weight notation, it is given by

(3|3,0, . . .) ⊕ (3|2,1,0, . . .) ⊕ 2(3|1,0, . . .).

Here one of the two copies of Rn[2] is contained in S2
0Rn ⊗ Rn, while the other comes from

the trace part. Let us write this decomposition as R1 ⊕ · · · ⊕ R4, with R4 coming from the trace
part. From above, we know that S2g contains the irreducible components �2g and S2

0Rn+2,
which correspond to S2

0Rn and R[2] ⊂ S2Rn, respectively. Consequently, we can determine the
relevant composition factors for S1, S2, and S3 by decomposing the tensor products of the com-
position factors of �2g as listed above with Rn, and then checking with of the components may
be contained in each Si . For S4, we proceed similarly with S2

0Rn+2 replacing �2g.
For the first relevant level (corresponding to filtration index −1), we first have to decompose

(1|2,1,0, . . .) ⊗ (1|1,0, . . .) which gives

(2|3,1,0, . . .) ⊕ (2|2,2,0, . . .) ⊕ (2|2,1,1,0, . . .) ⊕ (2|2,0, . . .) ⊕ (2|1,1,0, . . .).

Second, (1|1,0, . . .) ⊗ (1|1,0, . . .) ∼= (2|2,0, . . .) ⊕ (2|1,1,0, . . .) ⊕ (2|0, . . .).
Looking at the tensor products Ri ⊗ Rn, we conclude that S1 can only contain (2|3,1,0, . . .)

and (2|2,0, . . .), S3 can only contain (2|2,0, . . .) and (2|1,1,0, . . .), while all components of the
first sum may occur in S2. Hence from this level, we get the critical weights −4 and −4 − n

for R1. For R2, we obtain the critical weights −1, −3, −5, −1 − n, and −3 − n, while for R3,
the critical weights are −2, −4, and −2 − n.

The second relevant level is dealt with in an analogous way. The result is that for R1, we get
the additional critical weights −3, −3 − n, (−4 − n)/2, and (−7 − n)/2. For R2, we obtain
−3/2, −7/2, (−1 − n)/2, (−4 − n)/2, (−7 − n)/2, (−3 − 2n)/2. Finally, for R3, we get the
additional critical weights −1, −5/2, and (−4 − n)/2. A direct evaluation shows that for R4 we
get exactly the same critical weights as for R3 (although the bundle involved is different).

3.7. Discussion and remarks

(1) Note that the results in the examples from 3.6 are consistent with Theorem 9, which implies
that in all the cases discussed in 3.6 all critical weights have to be negative.

(2) From the examples of operators on densities discussed in 3.6 it is evident that the sets of
critical weights we obtain with our general procedure are far from being optimal. It is actually
easy to see why this happens, and even to partly improve the procedure, to get smaller sets
of critical weights. The point here is that part (1) of Proposition 3 can be heavily improved
in special cases, and in particular for the fundamental derivative on densities. In the case of
densities, already the values of a single fundamental derivative do not exhaust A0M[w]. On the
contrary, projecting to (A0M/A1M)[w] ∼= Λ2T M[w − 2] ⊕ E[w], the values always lie in the
density summand only. By naturality of the fundamental derivative, this implies that higher order
fundamental derivatives always will lie in subbundles which are much smaller than the bundle
W0M from Proposition 3.

Knowing this, one can run the analog of the procedure from 3.2 and 3.3 on the quotient by
the annihilator of this subbundle, which will be significantly smaller than the bundle VM we
have used. For this smaller quotient, there will be less irreducible components in the individual
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subquotients and hence less critical weights. In fact, it is easy to see directly that in the examples
discussed in 3.6 most (but not all) of the superfluous critical weights will disappear.

(3) In the case V ⊗W ∼= Rn the set of critical weights we have obtained in 3.6 will be closer to
the optimum than in the case of densities. As we have noted, this case can be used to study both
quantizations for operators mapping sections of E[w] to sections of T M[w+δ] and for operators
mapping sections of T ∗M[w] ∼= T M[w − 2] to sections of E[w + δ]. While these two cases are
completely symmetric from our point of view, this is no more true if one looks at the best possible
sets of critical weights. The point is that in the first case, the value of the splitting operator will be
paired with D(k)f ∈ Γ (SkA∗M[w]) for f ∈ Γ (E[w]), and as discussed above, this has values
in a much smaller subbundle than just the filtration component of degree zero. In the second
interpretation, we will have to pair it with D(k)α ∈ Γ (SkA∗M ⊗T ∗M[w]) for α ∈ Γ (T ∗M[w]),
and the values of this operator fill a more substantial part of the filtration component of degree
zero. Hence in the first case, we can remove more superfluous critical weights than in the second
one.

(4) There is a systematic way to derive explicit formulae for the procedures we have devel-
oped in terms of distinguished connections (e.g. the Levi-Civita connections of the metrics in a
conformal class), but this becomes quickly rather tedious. In view of the construction, the main
point is to obtain an explicit formula for the curved Casimir operator on irreducible components
of SkAM . This can be done along the lines of Proposition 2.2 of [5] which holds (with obvious
modifications) for general AHS-structures.
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1. Introduction

The notion of quantization originates in physics. Here we view it as quest for a correspondence between
a space of differential operators and the corresponding space of symbols. More specifically, consider the
space D0 of differential operators acting on smooth functions on a smooth manifold M and the space of
symbols S0. Quantization is a map Q0 : S0 → D0 such that Symb ◦Q0 = id |S0 where Symb : D0 → S0 is the
principal symbol map. If Φ ∈ D0 of the order k has the principal symbol σ then Φ−Q0(σ) ∈ D0 has the order
k−1. Iterating this we obtain the isomorphism of vector spaces

⊕k
i=0 Si

0
∼= Dk

0 where Si
0 = Γ (

⊙i
TM) ⊆ S0

and Dk
0 ⊆ D0 is the space of operators of order at most k. Here

⊙k is the kth symmetric tensor product.
We shall use the notation Qσ

0 := Q0(σ).
There is no natural quantization on a smooth manifold M . On the other hand, e.g. a choice of a linear

connection ∇ on M yields a preferred quantization in an obvious way: if σ ∈ Sk
0 and f ∈ C∞(M), we

put Qσ
0 (f) = σ(∇(k)f) where ∇(k)f is the symmetrized k-fold covariant derivative. Therefore there is a
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canonical quantization on every pseudo-Riemannian manifold M . Motivated by this observation one can
ask whether there is a natural quantization for less rigid geometrical structures on M .

In this article we study the case when the manifold M is equipped with a conformal structure. This was
initiated by Lecomte et al. [24,13] and we refer to [25] for details about further development and references.
On one hand, existence of conformally invariant quantization is known in many cases, see e.g. [13,4,26,11].
On the other hand, [25] shows the nonexistence for so-called critical weights of symbols. (The terminology
will be explained below.) Here we prove the complementary result, i.e. we provide an explicit construction
of the conformally invariant quantization for all noncritical weights.

The conformal structure on manifold M is a class of pseudo-Riemannian metrics [g] = {fg | f ∈
C∞(M), f > 0} on a manifold M . The homogeneous model is the pseudosphere M = Sp,q := Sp × Sq,
where (p, q) is the signature of g, the product of the standard metrics on Sp and Sq where one of them has
the opposite sign. This is a homogeneous space for G = SO0(p+1, q+1) acting on Sp,q by conformal motions
of [g] and we have the isomorphism Sp,q ∼= G/P where P ⊆ G is the Poincaré group of conformal motions
fixing a point, see [8] for details. Then both S0 and D0 are G-modules and the question of conformally
invariant quantization means to construct Q0 : S0 → D0 which intertwines these G-actions. If we pass from
Sp,q to Rp,q (where only the rational action of G is defined) via the stereographic projection, we replace
the G-action by the infinitesimal g-action. The Lie algebra g of G can be realized as a Lie algebra of
(polynomial) vector fields on Rp,q and they act by the Lie derivative as infinitesimal conformal symmetries.
The same can be done for every locally conformally flat manifold and the invariance of Q0 is given by
this g-action. This setting is often taken as the starting point in the study of invariant (or equivariant)
quantization [13]. It is natural to consider more generally bundles of conformal densities E[w], w ∈ R
(instead just functions) and the space of differential operators Γ (E[w1]) → Γ (E[w2]) denoted by Dw1,w2 .
Denoting by Dk

w1,w2 the space of operators of degree � k, the corresponding bundle of kth degree symbols
is then Sk

δ = (
⊙k

TM) ⊗ E[δ] ∼= Dk
w1,w2/Dk−1

w1,w2 where δ = w2 − w1. Note this is the notation used in the
conformally invariant calculus; the space of densities can be also defined as Fλ = Γ (

⊗
λ(|∧n

T ∗M |)) where∧n
T ∗M → M is the determinant line bundle, n = dim(M). Then one has the relation Γ (E[−nw]) = Fw.

Finally note one can also consider complex densities but this would not change results obtained in this
article. (That is, all weights w, which are significant from the point of view of invariant quantization, are
real.)

Summarizing, the question in the conformally flat case is whether for a given δ ∈ R there is an isomorphism
of sop+1,q+1-modules

Qδ : Sδ → Dw,w+δ (1)

for all w ∈ R where Sδ = (
⊙

TM)⊗E[δ]. That is, the corresponding bilinear differential operator Qδ : Sδ ×
E [w] → E [w + δ] is conformally invariant. It turns out the answer is positive for generic weights δ, i.e. for
all weights up to a certain number (which is finite for symbols of a fixed degree) [13,4,11]. On the other
hand, [25] identifies the set of critical weights δ for which the nonexistence is proved. Here we extend known
existence results to all noncritical weights δ. Note to get such complete answer one needs to study critical
weights for particular irreducible components of Sδ (similarly as in [25]). Note also the requirement that (1)
holds for all w ∈ R is essential for our notion of critical weights δ. If we drop this requirement, (1) could
hold also for critical weights δ, and certain weights w, see below.

Analogous problem can be formulated for all manifolds M with the given conformal class [g]. Then there
are generically no infinitesimal symmetries on (M, [g]) and by invariance of the quantization Qδ : Sδ →
Dw,w+δ we mean the corresponding bilinear operator Qδ : Sδ × E [w] → E [w + δ] is given in terms of a
Levi-Civita connection ∇ from the conformal class, its curvature R and algebraic operations in such a way
that Qδ does not depend on the choice of ∇. Using the terminology of conformal geometry, the bilinear
invariant operator Qδ has a curved analogue. Note there is generally no hope for uniqueness of Qδ as the
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curvature can modify conformal operators in various ways. Note the general problem of construction of
invariant bilinear operators V1 × V2 → W for conformal (and more generally parabolic) geometries for
irreducible bundles V1, V2 and W is considered in Kroeske’s thesis [23]. It is however not clear how to obtain
quantization from the machinery developed there.

Our main result is Theorem 3.3 which provides an explicit (and inductive) formula for Qδ on all curved
conformal manifolds and all noncritical (in the sense of [25]) weights δ. This is achieved using the conformal
tractor calculus, see [1] for a discussion on its origin and [7,6] for the relation to the Cartan connection. In
Section 4 we comment upon critical weights. First we recall their relation to existence of linear invariant
operators on symbols (cf. [25]) and then we discuss weights w such that Qδ : Sδ → Dw,w+δ exists even when
δ is critical, i.e. resonant weights w ∈ R. Details are available in the flat case [25], we shall indicate existence
of curved analogues for some resonant weights in Theorem 4.4.

2. Conformal geometry and tractor calculus

2.1. Notation and background

We present here a brief summary, further details may be found in [5,20]. Let M be a smooth manifold
of dimension n � 3. Recall that a conformal structure of signature (p, q) on M is a smooth ray subbundle
Q ⊂ S2T ∗M whose fibre over x consists of conformally related signature (p, q) metrics at the point x.
Sections of Q are metrics g on M . So we may equivalently view the conformal structure as the equivalence
class [g] of these conformally related metrics. The principal bundle π : Q → M has structure group R+, and
so each representation R+ 
 x �→ x−w/2 ∈ End(R) induces a natural line bundle on (M, [g]) that we term
the conformal density bundle E[w]. We shall write E [w] for the space of sections of this bundle. We write
Ea for the space of sections of the tangent bundle TM and Ea for the space of sections of T ∗M . The indices
here are abstract in the sense of [27] and we follow the usual conventions from that source. So for example
Eab is the space of sections of

⊗ 2T ∗M . Here and throughout, sections, tensors, and functions are always
smooth. When no confusion is likely to arise, we will use the same notation for a bundle and its section
space.

We write g for the conformal metric, that is the tautological section of S2T ∗M ⊗E[2] determined by the
conformal structure. This is used to identify TM with T ∗M [2]. For many calculations we employ abstract
indices in an obvious way. Given a choice of metric g from [g], we write ∇ for the corresponding Levi-Civita
connection. With these conventions the Laplacian Δ is given by Δ = gab∇a∇b = ∇b∇b. Here we are raising
indices and contracting using the (inverse) conformal metric. Indices will be raised and lowered in this way
without further comment. Note E[w] is trivialized by a choice of metric g from the conformal class, and we
also write ∇ for the connection corresponding to this trivialization. The coupled connection ∇a preserves
the conformal metric.

The curvature Rab
c
d of the Levi-Civita connection (the Riemannian curvature) is given by [∇a,∇b]vc =

Rab
c
dv

d ([·,·] indicates the commutator bracket). This can be decomposed into the totally trace-free Weyl
curvature Cabcd and a remaining part described by the symmetric Schouten tensor Pab, according to

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c, (2)

where [· · ·] indicates antisymmetrization over the enclosed indices. The Schouten tensor is a trace modifica-
tion of the Ricci tensor Ricab = Rca

c
b and vice versa: Ricab = (n − 2)Pab + Jgab, where we write J for the

trace Pa
a of P . The Cotton tensor is defined by Aabc := 2∇[bPc]a. Via the Bianchi identity this is related

to the divergence of the Weyl tensor as follows:

(n − 3)Aabc = ∇dCdabc. (3)
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Under a conformal transformation we replace a choice of metric g by the metric ĝ = e2Υ g, where Υ is a
smooth function. We recall that, in particular, the Weyl curvature is conformally invariant Ĉabcd = Cabcd.
With Υa := ∇aΥ , the Schouten tensor transforms according to

P̂ab = Pab − ∇aΥb + ΥaΥb − 1
2Υ cΥcgab. (4)

Explicit formulae for the corresponding transformation of the Levi-Civita connection and its curvatures
are given in e.g. [1,20]. From these, one can easily compute the transformation for a general valence (i.e.
rank) s section fbc···d ∈ Ebc···d[w] using the Leibniz rule:

∇̂āfbc···d = ∇āfbc···d + (w − s)Υāfbc···d − Υbfāc···d − · · · − Υdfbc···ā

+ Υ pfpc···dgbā + · · · + Υ pfbc···pgdā. (5)

We next define the standard tractor bundle over (M, [g]). It is a vector bundle of rank n + 2 defined, for
each g ∈ [g], by [EA]g = E [1]⊕Ea[1]⊕E [−1]. If ĝ = e2Υ g, we identify (α, μa, τ) ∈ [EA]g with (α̂, μ̂a, τ̂) ∈ [EA]ĝ
by the transformation

⎛
⎝

α̂

μ̂a

τ̂

⎞
⎠ =

⎛
⎝

1 0 0
Υa δa

b 0
−1

2ΥcΥ
c −Υ b 1

⎞
⎠
⎛
⎝

α

μb

τ

⎞
⎠ . (6)

It is straightforward to verify that these identifications are consistent upon changing to a third metric from
the conformal class, and so taking the quotient by this equivalence relation defines the standard tractor
bundle EA over the conformal manifold. (Alternatively the standard tractor bundle may be constructed as
a canonical quotient of a certain 2-jet bundle or as an associated bundle to the normal conformal Cartan
bundle [6].) On a conformal structure of signature (p, q), the bundle EA admits an invariant metric hAB

of signature (p + 1, q + 1) and an invariant connection, which we shall also denote by ∇a, preserving hAB .
Up to an isomorphism, this is the unique normal conformal tractor connection [7] and it induces a normal
connection on

⊗ EA that we will also denote by ∇a and term the (normal) tractor connection. In a conformal
scale g, the metric hAB and ∇a on EA are given by

hAB =

⎛
⎝

0 0 1
0 gab 0
1 0 0

⎞
⎠ and ∇a

⎛
⎝

α

μb

τ

⎞
⎠ =

⎛
⎝

∇aα − μa

∇aμb + gabτ + Pabα

∇aτ − Pabμ
b

⎞
⎠ . (7)

It is readily verified that both of these are conformally well-defined, i.e., independent of the choice of a
metric g ∈ [g]. Note that hAB defines a section of EAB = EA ⊗EB , where EA is the dual bundle of EA. Hence
we may use hAB and its inverse hAB to raise or lower indices of EA, EA and their tensor products.

In computations, it is often useful to introduce the ‘projectors’ from EA to the components E [1], Ea[1] and
E [−1] which are determined by a choice of scale. They are respectively denoted by XA ∈ EA[1], ZAa ∈ EAa[1]
and YA ∈ EA[−1], where EAa[w] = EA ⊗ Ea ⊗ E [w], etc. Using the metrics hAB and gab to raise indices, we
define XA, ZAa, Y A. Then we see that

YAXA = 1, ZAbZ
A

c = gbc, (8)

and all other quadratic combinations that contract the tractor index vanish. In (6) note that α̂ = α and
hence XA is conformally invariant.

The curvature Ω of the tractor connection is defined on EC by [∇a,∇b]V C = Ωab
C

EV E . Using (7) and
the decomposition (2) for the Riemannian curvature yields
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ΩabCE = ZC
cZE

eCabce − 2X[CZE]
eAeab. (9)

Given a choice of g ∈ [g], the tractor-D operator DA : E [w] → EA[w − 1] is defined by

DAV := (n + 2w − 2)wYAV + (n + 2w − 2)ZAa∇aV − XA�V, (10)

where �V := ΔV +wJV . This is conformally invariant, as can be checked directly using the formulae above
(or alternatively there are conformally invariant constructions of D, see e.g. [17]).

The operator DA is strongly invariant. That is, it is invariant as an operator

DA : EB···E [w] → EAB···E [w − 1]

where now we interpret ∇ in (10) as the coupled Levi-Civita–tractor connection. Note the strong invariance is
a property of a formula, see [18, p. 21] for a more detailed discussion and [14, (2)] for an illustrative example.
We shall say an operator is strongly invariant if it is clear which formula we mean. Note composition of two
strongly invariant operators is strongly invariant.

Beside the standard tractor bundle EA ∼= EA, we shall also need more details about the structure of
the adjoint tractor bundle E[A0A1]. To simplify the notation, we shall use form indices A = [A0A1] and
a = [a0a1]. For a chosen metric g, we have [EA]g = Ea ⊕ E[a0a1][2] ⊕ E ⊕ Ea. We can write sections FA ∈ EA
as

[FA]g = Ya
Aσa + Za

Aμa + WAν + Xa
Aρa

where σa ∈ Ea[2] ∼= Ea, μa ∈ Ea[2], ν ∈ E and ρa ∈ Ea and we use the notation Ya
A = Y[A0Za

A1], Za
A =

Za0

[A0Za1

A1], WA = X[A0YA1] and Xa
A = X[A0Za

A1].

2.2. Tractor connection and standard tractors

Using the standard tractors XB , Zb
B and YB , the tractor connection takes the form

∇aYBσ = YB∇aσ + Zb
BPabσ, σ ∈ E [w]

∇aZ
b
Bμb = −YBμa + Zb

B∇aμb − XBPa
bμb, μb ∈ Eb[w]

∇aXBρ = Zb
Bgabρ + XB∇aρ, ρ ∈ E [w] (11)

which follows from (7) (or see e.g. [20]). More accurately, ∇ denotes the coupled tractor–Levi-Civita con-
nection in expressions like in the previous display.

We shall need, more generally, to know how the composition of several applications of the tractor con-
nection acts on standard tractors. In fact, we shall need this only on Rp,q. It follows from (11) (and can be
verified easily by induction wrt. k � 1) that

∇(a1 · · · ∇ak)YBσ = YB∇(a1 · · · ∇ak)σ + ct,

∇(a1 · · · ∇ak)Z
b
Bμb = −kYBδb

(a1
∇a2 · · · ∇ak)μb + Zb

B∇(a1 · · · ∇ak)μb + ct,

∇(a1 · · · ∇ak)XBρ = −1
2k(k − 1)YBg(a1a2∇a3 · · · ∇ak)ρ + kZb

Bgb(a1∇a2 · · · ∇ak)ρ + XB∇(a1 · · · ∇ak)ρ + ct

where σ ∈ E [w], μb ∈ Eb[w], ρ ∈ E [w] and “ct” denotes terms which involve curvature and at most k − 2
derivatives. (That is, “ct” vanishes on Rp,q.) Here and below, (· · ·) denotes symmetrization of the enclosed
indices and the notation (· · ·)0 will denote the projection to the symmetric trace-free part. In fact, the
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previous display holds also for k = 0 if we consider expressions with k free indices a1 · · · ak simply being
absent for k = 0. Henceforth we shall use this convention. It follows from the previous display (or can be
verified by induction directly) that for k � 0 we obtain

∇(a1 · · · ∇ak)0YBσ = YB∇(a1 · · · ∇ak)0σ + ct,

∇(a1 · · · ∇ak)0Z
b
Bμb = −kYBδb

(a1
∇a2 · · · ∇ak)0μb + Zb

B∇(a1 · · · ∇ak)0μb + ct,

∇(a1 · · · ∇ak)0XBρ = kZb
Bgb(a1∇a2 · · · ∇ak)0ρ + XB∇(a1 · · · ∇ak)0ρ + ct (12)

and for  � 0 we have

Δ�YBσ = YBΔ�σ + ct,

Δ�Zb
Bμb = −2YB∇bΔ�−1μb + Zb

BΔ�μb + ct,

Δ�XBρ = −(n + 2 − 2)YBΔ�−1ρ + 2Zb
B∇bΔ�−1ρ + XBΔ�ρ + ct (13)

where σ ∈ E [w], μb ∈ Eb[w], ρ ∈ E [w].

3. Tractor construction of conformal quantization and critical weights

We assume σa1···ak ∈ E(a1···ak)[δ] =: Sδ,k and f ∈ E [w]. Our aim is to construct a quantization, i.e. a
differential operator Qσ

δ : E [w] → E [w + δ] with the leading term σa1···ak∇a1 · · · ∇ak
. The bundle of symbols

E(a1···ak)[δ] decomposes into irreducibles as

E(a1···ak)[δ] =
� k

2 �⊕

i=0
E(a1···ak−2i)0 [δ + 2i],

where a� denotes the lower integer part of a ∈ R. (Recall that the notation E(a···b)0 denotes the symmetric
trace-free part.) We can assume σ is irreducible (as Qσ

δ is linear in σ) so

σa1···ak = σ′ (a1···ak′gak′+1ak′+2 · · · gak′+2�−1ak′+2�), k′ + 2 = k

where
(
σ′)a1···ak′ ∈ E(a1···ak′ )0

[
δ′], δ′ = δ + 2

since gab ∈ Eab[−2].
Henceforth we consider the irreducible symbol σ′ as in the previous display. Our aim is to construct a

differential operator

Qσ′
k′,� : E [w] → E

[
w + δ′ − 2l

]
, Qσ′

k′,�(f) =
(
σ′)a1···ak′ ∇(a1 · · · ∇ak′ )0Δ�f + lot (14)

for some scalar y �= 0 which is conformally invariant as the bilinear operator Qk′,� : E(a1···ak′ )0 [δ′] × E [w] →
E [w+δ′ −2l]. Here “lot” denotes lower order terms and we have suppressed the parameter δ′ in the notation
for Q. The reason is that we will define the operator Qσ′

k′,� : E [w] → E [w + δ′ − 2l] by a universal tractor
formula for all δ′ ∈ R up to a finite number of critical weights. Then we shall discuss these critical weights
δ′ in detail.

The construction of Qk′,� is divided into two steps – the cases  = 0 and  > 0.
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3.1. The quantization Qk′,0

This case is known, the explicit formula is obtained in [28] or can be deduced from [23]. To keep our
presentation self-contained and also to verify the strong invariance, we present a construction (of a tractor
formula) here.

Theorem 3.1. Let (σ′)a1···ak′ ∈ E(a1···ak′ )0 [δ′]. There is a tractor formula for the quantization Qσ′
k′,0 : E [w] →

E [w + δ′] with the leading term (σ′)a1···ak′ ∇a1 · · · ∇ak′ for every weight δ′ ∈ R satisfying

δ′ /∈ Σk′,0 where Σk′,0 =
{

{−(n + k′ + i − 2) | i = 1, . . . , k′} k′ � 1,
∅ k′ = 0.

(15)

Moreover, Qk′,0 is strongly conformally invariant in the following sense: if we replace f ∈ E [w] by
f ∈ T ⊗ E [w] for any tractor bundle T and, in the formula for Qk′,0, we replace the Levi-Civita connection
acting on f by the coupled Levi-Civita–tractor connection then Qk′,0 is a conformally invariant bilinear
operator E(a1···ak′ )0 [δ′] × (T ⊗ E [w]) → T ⊗ E [w + δ′].

Proof. We shall use certain splitting operators from E [w] and E(a1···ak′ )0 [δ′] into symmetric tensor products
of the adjoint tractor bundle EA and their subquotients where we use the form index notation A = [A0A1],
see Section 2.1. These are just abstract indices of the adjoint tractor bundle. We shall use the notation
f(AB) = 1

2 (fAB + fBA), fAB ∈ EAB for the symmetrization, the symmetric tensor products of the adjoint
tractor bundle will be denoted by E(A1···Ak). This notation means symmetrization over adjoint indices (and
not over standard tractor indices), i.e. generally f(AB) �= 0. The completely trace-free component with
respect to hAB will be denoted by E(A1···Ak)0 . Note the latter bundles are generally not irreducible tractor
bundles.

The skew symmetrization with the tractor XA0
i

defines bundle maps E(A1···Ak)0 → EA1···[A0
i Ai]···Ak

.
The joint kernel of all these maps for i = 1, . . . , k will be denoted by Ē(A1···Ak)0 . Using the comple-
ment Ē⊥

(A1···Ak)0 ⊆ E(A1···Ak)0 (via the tractor metric h), we obtain the quotient bundle Ẽ(A1···Ak)0 :=
E(A1···Ak)0/Ē⊥

(A1···Ak)0 . That is, we have the duality (Ẽ(A1···Ak)0)∗ ∼= Ē(A1···Ak)0 . One can easily see that
choosing a metric from the conformal class, sections of these have the form

F̄(A1···Ak)0 =
k∑

i=0
Xa1

A1
· · · Xai

Ai
WAi+1 · · · WAk

f̄ i
(a1···ai)0 for F̄(A1···Ak)0 ∈ Ē(A1···Ak)0 ,

F̃(A1···Ak)0 =
k∑

i=0
Ya1

A1
· · · Yai

Ai
WAi+1 · · · WAk

f̃ i
(a1···ai)0 for F̃(A1···Ak)0 ∈ Ẽ(A1···Ak)0

for some sections f̄ i
(a1···ai)0 and f̃ i

(a1···ai)0 . Note i is not an abstract index here. This describes the composition
series for Ē(A1···Ak)0 and Ẽ(A1···Ak)0 . (In particular, choosing a metric in the conformal class, both these
bundles decompose to exactly k + 1 irreducible components, e.g. Ē(A1···Ak)0 = E ⊕ Ea1 ⊕ · · · ⊕ E(a1···ak)0 .)
Finally, taking the tensor product with density bundles, we obtain Ē(A1···Ak)0 [w] and Ẽ(A1···Ak)0 [w] for any
w ∈ R.

Further we shall need the curved Casimir operator C introduced in [10]. We refer for the definition of
C to [10]; here we recall crucial properties of C in special cases. (Note also that, more explicitly, one has
C = hABD2

AB where the operator D2
AB is given by [21, (21)].) Consider a subquotient Tk of E(A1···Ak)0 [w]

with the filtration {0} = T−1 ⊆ T0 ⊆ T1 ⊆ · · · ⊆ Tk such that T�/T�−1 are irreducible for  = 0, . . . , k. This
in particular covers cases of our interest, i.e. Tk = Ẽ(A1···Ak)0 [w] and Tk = Ē(A1···Ak)0 [w]. Then C : Tk → Tk

has the following properties: it is conformally invariant and of the first order, it preserves subquotients and
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the induced operator on T�/T�−1 is multiplication by a scalar which is polynomial in w. We shall denote the
latter scalar by α�. These properties guarantee that the operator

Tk/T� → Tk/T�−1
C−α�−1−−−−−−→ Tk/T�−1,

where the first arrow is an arbitrary (not necessarily conformally invariant) extension, is overall conformally
invariant for  = 1, . . . , k. Iterating this k times we obtain the conformally invariant extension P (C) :=
(C − αk−1) ◦ · · · ◦ (C − α0) : Tk/Tk−1 → Tk. Moreover, P (C) restricted to Tk/Tk−1 acts by multiplication by
(αk −αk−1) ◦ · · · ◦ (αk −α0) ∈ R. This is a polynomial in w which we denote by p(w). In particular, degrees
of both polynomials P and p are k. (Note that although αk, . . . , α0 are quadratic in w, differences αk −α�−1
are affine in w).

Henceforth assume k′ � 1 and put k := k′. We shall start with the splitting E [w] → Ē(A1···Ak′ )0 [w] =: Tk′ .
Corresponding subquotients are T�/T�−1 ∼= E(a1···ak′−�)0 [w],  = 0, . . . , k′ − 1 and Tk′/Tk′−1 ∼= E [w]. Assume
f ∈ E [w]. For an arbitrarily chosen metric from the conformal class, we consider the inclusion

ῑ : E [w] ↪→ Ē(A1···Ak′ )0 [w], f
ῑ�→ WA1 · · · WAk′ f.

Note the induced map to the subquotient E [w] ῑ
↪→ Tk′ � Tk′/Tk′−1 is just the isomorphism mentioned

above. Now ῑ(f) can be extended to a conformally invariant section F̄A1···Ak′ := P̄ (C)(ῑ(f)A1···Ak′ ) for a
suitable polynomial P̄ (C) in C such that the degree of P̄ is k′. Let us compute the highest order term of
P̄ (C)(WA1 · · · WAk′ f). For this it is sufficient to work on Rp,q with the standard metric. Then if P ′ is a
suitable polynomial of degree r, 0 � r � k′ such that P ′(C)(WA1 · · · WAk′ f) is conformally invariant as
in the construction above, then there is a (degree r) polynomial p′ such that P ′(C)(WA1 · · · WAk′ f) =
WA1 · · · WAk′ p

′(w)f + · · · + Xa1
(A1

· · · Xar

Ar
WAr+1 · · · WAk′ )∇(a1 · · · ∇ar)0f up to a (nonzero) scalar multiple.

This can be easily verified by the induction using the fact that C is of the first order. Putting r := k′, there
is a k′-order polynomial p̄(w) such that

F̄A1···Ak′ = WA1 · · · WAk′ p̄(w)f + · · · + Xa1
(A1

· · · Xak′
Ak′ )∇(a1 · · · ∇ak′ )0f (16)

up to a nonzero scalar multiple.
The splitting E(a1···ak′ )0 [δ′] → Ẽ(A1···Ak′ )0 [δ′] =: Tk′ is analogous. Corresponding subquotients are now

T�/T�−1 ∼= E(a1···a�)0 [δ′],  = 1, . . . , k′ and T0/T−1 ∼= E [δ′]. Assume (σ′)a1···ak′ ∈ E(a1···ak′ )0 [δ′]. As above, we
shall start with the inclusion

ι̃ : E(a1···ak′ )0
[
δ′] ↪→ Ẽ(A1···Ak′ )0

[
δ′],

(
σ′)a1···ak′ ι̃�→ Ya1

A1
· · · Yak′

Ak′

(
σ′)

a1···ak′

for a chosen metric in the conformal class. Then we apply a suitable polynomial operator in the curved
Casimir to obtain a conformally invariant extension F̃A1···Ak′ := P̃ (C)(ι̃(σ′)A1···Ak′ ) ∈ Ẽ(A1···Ak′ )0 [δ′]. A sim-
ilar reasoning as above shows that P̃ has order k′ and

F̃A1···Ak′ = YA1a1 · · · YAk′ak′ p̃
(
δ′)(σ′)a1···ak′ + · · · + W(A1 · · · WAk′ )∇(a1 · · · ∇ak′ )0

(
σ′)a1···ak′ (17)

on Rp,q for a polynomial p̃ of the order k′. In this case we need to know p̃(δ′) explicitly; following [10] one
computes

p̃
(
δ′) =

k′∏

i=1

(
δ′ + n + k′ + i − 2

)
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which is non-vanishing by the hypothesis, see (15). In fact, analogues of this splitting are well-known, see
e.g. [23, 6.2.3] or [29, 2.1.4].

In the last step we use the duality between Ē(A1···Ak)0 and Ẽ(A1···Ak)0 . From this it follows that Qσ′
k′,0(f) :=

1
p̃(δ′) F̃

A1···Ak′ F̄A1···Ak′ is a conformally invariant bilinear operator. Considering Qσ′
k′,0 as a linear operator

E [w] → E [w + δ′], it follows from (16) and (17) that

F̃A1···Ak′ F̄A1···Ak′ = p̃
(
δ′)(σ′)a1···ak′ ∇(a1 · · · ∇ak′ )0f + lot

where “lot” denotes the lower order terms.
It remains to verify the strong invariance of Qσ′

k′,0(f). But this follows from the fact that the curved
Casimir is a strongly invariant linear differential operator. �
3.2. The general case Qk′,�

Recall k′,  � 0, (σ′)a1···ak′ ∈ E(a1···ak′ )0 [δ′] and f ∈ E [w], δ′, w ∈ R. We shall construct Qk′,� by
an inductive procedure. The main step is the construction of Qσ′

k′,�+1 from Qσ′
k′,�. This construction (in the

proposition below) is a specific implementation of the idea known as curved translation principle (see [27,16]
for its origins) which can be formulated as follows. Consider f ∈ E [w]. Then first extend f invariantly into
a tractor field (in our case DBf), then apply the known invariant operator (in our case Qσ′

k′,�) and finally
go back to densities (by applying DB in our case) to obtain the new operator (in our case Qσ′

k′,�+1). Overall
this yields the following construction:

Proposition 3.2. Fix δ′ ∈ R and assume there is an explicit construction of the quantization Qσ′
k′,� : E [w] →

E [w + δ′ − 2], k′,  � 0 with the leading term σa1···ak′ ∇a1 · · · ∇ak′ Δ� for every w ∈ R. Also assume Qk′,� is
strongly invariant in the sense of Theorem 3.1. Then the operator

Q̃σ′
k′,�+1 := DBQσ′

k′,�DB : E [w] → E
[
w + δ′ − 2( + 1)

]

has the form

Q̃σ′
k′,�+1(f) = −

(
δ′ − 

)(
n + 2δ′ + 2

(
k′ − 

)
− 2
)
σa1···ak′ ∇a1 · · · ∇ak′ Δ�+1f + lot

for every w ∈ R. Here “lot” denotes lower order terms.
The operator Q̃k′,�+1 : E(a1···ak′ )0 [δ′] × E [w] → E [w + δ′ − 2( + 1)] is a conformally invariant bilin-

ear operator. Moreover, it is strongly invariant in the sense of Theorem 3.1. When well-defined, we put
Qσ′

k′,�+1 := − 1
(δ′−�)(n+2δ′+2(k′−�)−2) Q̃

σ′
k′,�+1.

Proof. We shall start with the discussion on the invariance. Since Qk′,� : E(a1···ak′ )0 [δ′]×E [w] → E [w+δ′−2]
is assumed to be strongly invariant (in the sense of Theorem 3.1), it is also invariant as Qk′,l : E(a1···ak′ )0 [δ′]×
EB [w] → EB [w + δ′ − 2]. Therefore the composition

E(a1···ak′ )0
[
δ′]× E [w] id ×DB−→ E(a1···ak′ )0

[
δ′]× EB [w − 1]

Qk′,�−→ EB

[
(w − 1) + δ′ − 2

] DB

−→ E
[
w + δ′ − 2 − 2

]

is a conformally invariant bilinear operator. The strong invariance of Q̃k′,l+1 follows from the strong invari-
ance of id ×DB , Q̃k′,l and DB .

It remains to compute the symbol of Q̃σ′
k′,�+1, we shall do it by a direct computation. The tractor

D-operator is explicitly given by the sum of three terms on the right hand side of (10). Decompos-
ing both DB and DB in the formula for Q̃σ′

k′,l+1 accordingly, we obtain overall 9 leading terms. Note
Qσ′

k′,�DBf = [(σ′)a1···ak′ ∇a1 · · · ∇ak′ + lot]Δ�DBf ∈ EB [w′] where f ∈ E [w] and w′ = w + δ′ − 2 − 1.
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Since the tractor D is of the second order and Qσ′
k′,� is of the order k′ + 2, the leading term of Q̃σ′

k′,�+1
has the order at most k′ + 2 + 4. In fact, it turns out this order is k′ + 2 + 2 in the generic case (or less
for certain values of δ′). To show this we will collect all terms of the order at least k′ + 2 + 2. In fact, we
shall do this in details only for the leading term (σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ� of Qσ′

k′,�. But it will be obvious
from the form of all 9 summands this is sufficient. Below we shall use lot�o to denote terms of the order at
most o and lot<o will denotes terms of order smaller than o. To simplify the notation we will henceforth
work with the Euclidean metric. (Terms involving the curvature have necessarily lower degree than 2+k′.)
Then all terms on the right hand side of (12) and (13) denoted by “ct” vanish.

I. We shall start with w′(n + 2w′ − 2)Y BQσ′
k′,�DBf ; decomposing DB here according to (10) yields first

three summands.
I.a The first one is

w′(n + 2w′ − 2
)
Y BQσ′

k′,�

[
w(n + 2w − 2)YBf

]

= w′(n + 2w′ − 2
)
w(n + 2w − 2)Y B

(
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�YBf = 0. (18)

The reason is that the tractor Y B contracts nontrivially only with XB according to (8) and if we
compute ∇(a1 · · · ∇ak′ )0Δ�YBf according to (12) and (13), XB always involves curvature.

I.b Analogously we obtain

w′(n + 2w′ − 2
)
Y BQσ′

k′,�

[
(n + 2w − 2)Zb

B∇bf
]

= 0. (19)

I.c Looking at the XB-terms of Qσ′
k′,�(−XBΔf), we see from (12) and (13) that

w′(n + 2w′ − 2
)
Y BQσ′

k′,�[−XBΔf ]

= −w′(n + 2w′ − 2
)(

σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1f + lot�k′+2�+1. (20)

II. Next we shall compute (n + 2w′ − 2)ZBb∇bQ
σ′
k′,�DBf , we obtain again three summands. They are

produced by contraction of (n + 2w′ − 2)Zb
B with

∇bQ
σ′
k′,�DBf =

[(
∇b

(
σ′)a1···ak′ )∇a1 · · · ∇ak′ +

(
σ′)a1···ak′ ∇b∇a1 · · · ∇ak′ + lot<k′

]
Δ�DBf.

We need to discuss here only the first two terms in the square bracket and only Z b̄
B-terms according

to (8). First, it is easy to see that
(
n + 2w′ − 2

)
ZBb

(
∇b

(
σ′)a1···ak′ )∇a1 · · · ∇ak′ Δ�DBf = lot�k′+2�+1.

(The component w(n + 2w − 2)YB of DB does not contribute to the right hand side of the previous
display at all and the remaining components (n+ 2w − 2)Z b̄

B∇b̄ and −XBΔ contribute by terms of the
order � k′ + 2 + 1.) Hence it remains to collect Z b̄

B-terms of (σ′)a1···ak′ ∇b∇a1 · · · ∇ak′ Δ�DBf . Using
the form (10) of DB , we obtain three more summands which are analogues of I.a, I.b and I.c above.
A short computation reveals that these are

(
n + 2w′ − 2

)
ZBb

(
σ′)a1···ak′ ∇b∇a1 · · · ∇ak′ Δ�

[
w(n + 2w − 2)YBf

]
= 0, (21)

(
n + 2w′ − 2

)
ZBb

(
σ′)a1···ak′ ∇b∇a1′ · · · ∇ak′ Δ�

[
(n + 2w − 2)Z b̄

B∇b̄f
]

=
(
n + 2w′ − 2

)
(n + 2w − 2)ZBb

(
σ′)a1···ak′ ∇bZ

b̄
B∇a1 · · · ∇ak′ Δ�∇b̄f

=
(
n + 2w′ − 2

)
(n + 2w − 2)σa1···ak′ Δ�+1f, (22)
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(
n + 2w′ − 2

)
ZBbσa1···ak′ ∇b∇a1 · · · ∇ak′ Δ�[−XBΔf ]

= −
(
n + 2w′ − 2

)
ZBbσa1···ak′ ∇b∇a1 · · · ∇ak′

[
2Z b̄

B∇b̄Δ� + XBΔ�+1]f
= −

(
n + 2w′ − 2

)
ZBb

(
σ′)a1···ak′ ∇b

[
XB∇a1 · · · ∇ak′ Δ�+1

+ Z b̄
B

(
2∇a1 · · · ∇ak′ ∇b̄Δ� + k′gb̄a1

∇a2 · · · ∇ak′ Δ�+1)]f
= −

(
n + 2w′ − 2

)(
2 + k′ + n

)(
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1f. (23)

Beside the fact that ZBb contracts nontrivially only with Z b̄
B , we have used (13) to commute Δ� with

Z b̄
B and XB , (12) to commute ∇a1 · · · ∇ak′ with Z b̄

B and XB and (11) to commute ∇b with Z b̄
B and XB .

III. It remains to compute −XBΔQσ′
k′,�DBf . The computation is analogous to previous cases but getting

more tedious. First we observe

−XBΔQσ′
k′,�DBf = −XB

[(
Δ
(
σ′)a1···ak′ )∇a1 · · · ∇ak′ + 2

(
∇p
(
σ′)a1···ak′ )∇p∇a1 · · · ∇ak′

+
(
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ + lot�k′−1

]
Δ�DBf.

We shall discuss only the first three terms in the above square bracket. One can compute that

−XB
[(

Δ
(
σ′)a1···ak′ )∇a1 · · · ∇ak′ + 2

(
∇p
(
σ′)a1···ak′ )∇p∇a1 · · · ∇ak′

]
Δ�DBf = lot�k′+2�+1

so it remains to compute only −XB(σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1DBf . This yields three summands (ana-
logues of I.a, I.b and I.c above) according to (10). After some computation we obtain

−XB
(
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1[w(n + 2w − 2)YBf

]

= −w(n + 2w − 2)
(
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1f, (24)

−XB
(
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1[(n + 2w − 2)Z b̄

B∇b̄f
]

= −(n + 2w − 2)XB
(
σ′)a1···ak′ ∇a1 · · · ∇ak′

[
−2( + 1)Y B∇ b̄Δ�∇b̄ + Z b̄

B∇b̄Δ�+1]f
= −(n + 2w − 2)

[
−2( + 1) − k′](σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1f, (25)

−XB
(
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1[−XBΔf ]

= XBσa1···ak′ ∇a1 · · · ∇ak′

[
−( + 1)(n + 2)YBΔ�+1 + 2( + 1)Z b̄

B∇b̄Δ�+1 + XBΔ�+2]f
=
[
−( + 1)(n + 2) − 2k′( + 1)

](
σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1f. (26)

The last step of the proof is to sum up the right hand sides of 9 relations (18), (19), (20), (21), (22), (23)
and (24), (25), (26) above. That is, we need to compute the scalar

−w′(n + 2w′ − 2
)

+
(
n + 2w′ − 2

)
(n + 2w − 2) −

(
n + 2w′ − 2

)(
2 + k′ + 1

)
,

−w(n + 2w − 2) + (n + 2w − 2)
(
2 + k′ + 2

)
− ( + 1)

(
n + 2 + 2k′)

where w′ = w + δ′ − 2 − 1. This requires some work, the result is −(δ′ − )(n + 2δ′ + 2k′ − 2 − 2) and
the proposition follows. Note the resulting scalar does not depend on w; this is a good verification that
computations above are correct. �
Theorem 3.3. Let k′,  � 0, (σ′)a1···ak′ ∈ E(a1···ak′ )0 [δ′] and f ∈ E [w], δ′, w ∈ R. Then

Qσ′
k′,� := 1

β
DB1 · · ·DBk′ Qσ′

k′,0DBk′ · · ·DB1 : E [w] → E
[
w + δ′ − 2

]
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defines, for a nonzero scalar β, the conformally invariant quantization with the leading term (σ′)a1···ak′ ×
∇a1 · · · ∇ak′ Δ� (up to a sign) for every weight δ′ satisfying

δ′ /∈ Σk′,� := Σk′,0 ∪ Σ′
k′,� ∪ Σ′′

k′,� (27)

where Σk′,0 is given by (15),

Σ′
k′,� =

{
(j − 1)

∣∣ j = 1, . . . , 
}
, Σ′′

k′,� =
{

−1
2
(
n + 2k′ − 2j

) ∣∣∣ j = 1, . . . , 
}

for  � 1. (28)

We put Σ′
k′,0 = Σ′′

k′,0 := ∅. Moreover, Qσ′
k′,� is strongly invariant in the sense of Theorem 3.1.

Proof. The set of critical weights Σk′,� (and the choice of β) easily follows (by induction with respect to )
from Proposition 3.2. Since the tractor D and Qσ′

k′,0 are strongly invariant, the last claim is obvious. �
4. Remarks on critical weights

We shall discuss the cases δ′ ∈ Σk′,� from (27) in detail. First, a simple calculation shows

Lemma 4.1.

(i) 2 /∈ Σk′,� for all k′,  � 0.
(ii) The sets Σk′,0 and Σ′

k′,� ∪ Σ′′
k′,� are disjoint. �

The symbols of the quantization E [w] → E [w] (i.e. with zero shift δ) are of a special interest [13]. The flat
quantization developed in [13] is never critical for such symbols [13, 3.1], the construction in [11] extends
that to the curved setting. The previous lemma (i) recovers this fact for the quantization Qσ′

k′,�.
The critical weights are closely related to existence of natural linear conformal operators. They are

completely classified in the locally flat case [2,3]. Existence of such operators on symbols is related to
critical weights δ as follows:

Theorem 4.2. (See [25].) Consider the quantization Qσ′
k′,� for symbols

(
σ′)a1···ak ∈ E(a1···ak′ )0

[
δ′] ⊆ E(a1···ak′ak′+1···ak′+2�)0

[
δ′ − 2

]
.

If there is a nontrivial linear invariant operator

E(a1···ak′ )0
[
δ′]→ E(a1···ap)[δ′ − 2

]
, 0 � p � k′ + 2 − 1

then the invariant quantization Qσ′
k′,� does not exist.

Given k′ and , the set of critical weights δ′ ∈ Σk′,� corresponds exactly to those δ′ for which there is a
linear invariant operator as in the theorem. In more detail:

Proposition 4.3. Assume the manifold M is conformally flat. If δ′ ∈ Σk′,� then there exists a nontrivial
natural linear conformal operator on E(a1···ak′ )0 [δ′] as follows

E(a1···ak′ )0
[
δ′]→ E(a1···ai−1)0

[
δ′], δ′ = −

(
n + k′ + i − 2

)
∈ Σk′,0,

E(a1···ak′ )0
[
δ′]→ E(a1···ak′+j)0

[
δ′ − 2j

]
, δ′ = j − 1 ∈ Σ′

k′,�,

E(a1···ak′ )0
[
δ′]→ E(a1···ak′ )0

[
δ′ − 2j

]
, δ′ = −1

2
(
n + 2k′ − 2j

)
∈ Σ′′

k′,�. �
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Proof. The classification of invariant linear operators between weighted symmetric powers of the tangent
bundle (which appear in Theorem 4.2) is easy using the classification [2,3] as presented in [15, Introduction].
From this one easily concludes, that every invariant operator between symmetric weighted tensors is (using
the terminology from [15, Introduction]) either the first BGG operator or the last BGG operator or one of
singular/nonstandard operators.

The detailed analysis is performed e.g. in [29]. From this one can see that the case δ′ ∈ Σk′,0 corresponds
to the last BGG operator, the case δ′ ∈ Σ′

k′,� corresponds to the first BGG operator and the case δ′ ∈ Σ′′
k′,�

to one of singular/nonstandard operators. �
Note the terminology of the proof corresponds to the following: the case δ′ ∈ Σk′,0 is a divergence type

operator of the order k′ − i + 1, δ′ ∈ Σ′
k′,� is the generalized conformal Killing operator of the order j and

δ′ ∈ Σ′′
k′,� yields a power of Laplacian type operator of the order 2j. Note the operator in the proposition is

not unique as generally Σ′
k′,� ∩ Σ′′

k′,� �= ∅.
We have seen that the set Σk′,� from Theorem 3.3 agrees exactly with nonexistence results in [25]. That is,

Theorem 3.3 together with [25] provides complete classification of critical weights for conformally invariant
quantization on densities.

Also note that invariant operators E(a1···ak′ )0 [δ′] → E(a1···ak′ )0 [δ′ − 2j] from Proposition 4.3 do exist in
the conformally flat case but not necessarily in the curved case [19], i.e. this operator might not have a
curved analogue. That is, Theorem 4.2 would not provide the full set of critical weights in curved cases.

Now assume δ′ ∈ Σk′,� is critical. Then Qσ′
k′,� : E [w] → E [w + δ′ − 2l] cannot exist for all w ∈ R. Such

a quantization can exist, though, for certain w called resonant weights. Their classification and relation to
linear invariant operators on E [w] is discussed in [25] in the flat case. It is unclear whether there is a curved
analogue of Qσ′

k′,� : E [w] → E [w + δ′ − 2l] for a resonant weight w. Here we show that such curved analogue
exists at least for some resonant weights (see the theorem below).

First we recall that, assuming δ′ is critical, resonant weights of Qσ′
k′,� : E [w] → E [w + δ′ − 2l] are related

to existence of following operators on E [w]:

Sp : E [p − 1] → E(a1···ap)0 [p − 1], Lp : E [−n/2 + p] → E [−n/2 − p],

Sp(f) = ∇(a1 · · · ∇ap)0f + lot, Lp(f) = Δpf + lot,

for p � 1 (so p is not an abstract index here) and lot stands for “lower order terms”. If n is odd or M is
conformally flat, these operators exist for all p � 1. In the curved case for n even, Sp exists for all p � 1
and Lp exists for 1 � p � n, see [9,22,19]. They are strongly invariant (can be given by a strongly invariant
formula) in the flat case; in the curved case, Sp is strongly invariant always and Lp only for p < n [18].

Theorem 4.4. Let δ′ ∈ Σk′,� and f ∈ E [w] and assume the conformally flat setting. Then there is al-
ways a choice of w ∈ R for which there is a quantization Qσ′

k′,� : E [w] → E [w + δ] with the leading term
(σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�f in the flat case. Explicitly, the quantization is given (up to possibly a nonzero
scalar) by formulae

Qσ′
k′,0L� : E [−n/2 + ] → E

[
δ′ − n/2 − 

]
, δ′ ∈ Σ′

k′,� ∪ Σ′′
k′,�,

DB1 · · ·DB�ι
(
σ′)Sk′DB1 · · ·DB�

: E
[
k′ +  − 1

]
→ E

[
δ′ + k′ −  − 1

]
, δ′ ∈ Σk′,0

where ι(σ′) is the complete contraction of the image of Sp with σ′.
In the curved case, the statement is true for n odd or δ′ ∈ Σk′,0. Assuming further  � n in the curved

case, the statement is true also for n even and δ′ ∈ Σ′
k′,� ∪ Σ′′

k′,�.

Proof. The conformal invariance is obvious (recall Sk′ has the source space E [k′−1] and is strongly invariant).
It remains to verify the displayed operators have the required leading term (up to a nonzero multiple). In
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the case δ′ ∈ Σ′
k′,� ∪ Σ′′

k′,�, this follows from the leading term of L�, properties of Qσ′
k′,0 in Theorem 3.3 and

Lemma 4.1(ii).
Assume δ′ ∈ Σk′,0 and denote by Q̄σ′

k′,� the displayed operator for such δ′. We need to compute the leading
term of Q̄σ′

k′,�. Observe the generic quantization Qσ′
k′,� is constructed in a similar way as Q̄σ′

k′,� – only the
subfactor Qσ′

k′,0 of Qσ′
k′,� (see the display in Theorem 3.3) is replaced by ι(σ′)Sk′ in Q̄σ′

k′,�. It is mentioned in
the proof of Proposition 3.2 that only the term (σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ� of Qσ′

k′,� contributes to the generic
leading term (σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ�+1 of Q̃σ′

k′,�, see Proposition 3.2 for the notation. However ι(σ′)Sk′ has
the leading term (σ′)a1···ak′ ∇a1 · · · ∇ak′ for δ′ ∈ Σk′,0 as well as Qσ′

k′,0 for δ′ /∈ Σk′,0. It follows that Q̄σ′
k′,�

has (σ′)a1···ak′ ∇a1 · · · ∇ak′ Δ� as the leading term for all δ′ ∈ Σ′
k′,� ∪Σ′′

k′,�. Using Lemma 4.1(ii) the theorem
follows. �
Remark 4.5. As one of referees pointed out, nonexistence of operators Lp : E [−n/2+p] → E [−n/2−p] implies
nonexistence of certain resonant weights. Consider the (2p)th order symbol σ ∈ E ⊆ E(a1···a2p)[−2p]. The
corresponding quantization Qσ

0,p : E [w] → E [w−2p] does not exist according to Theorem 3.3 and concerning
the possible resonant weights w, we can formulate the following:

(1) If n is even then {−n/2 + 1, . . . , 0} is the complete set of resonant weights.
(2) If n is odd or we restrict to conformally flat structures then {−n/2 + 1, . . . , 0, . . .} is the complete set

of resonant weights.

Indeed, if Qσ
0,p : E [w] → E [w − 2p] existed, the choice σ = 1 (the function identically equal to 1) would

provide the operator Lp : E [w] → E [w − 2p]. Thus both (1) and (2) follow from (non)existence of operators
Lp discussed before Theorem 4.4.

5. Examples

Explicit formulae (in terms of the Levi-Civita connection and its curvature) for the conformally invariant
quantization were computed in [12] for the order � 3, the fourth order case is known explicitly for trace-free
symbols σ ∈ E(abcd)0 [δ] [28,23]. Here we show tractor formulae for remaining symbols of the order four.

Beside the trace-free part, there are two possible irreducible fourth order symbols: σ′ ∈ E [δ′] where k′ = 0
and  = 2 and (σ̄′)ab ∈ E(ab)0 [δ′] where k′ = 2 and  = 1. In the first case, Proposition 3.2 means that

Q̃σ′
0,2(f) = DADBσ′DBDAf = δ′(δ′ − 1

)(
n + 2δ′ − 2

)(
n + 2δ′ − 4

)
σ′Δ2f + lot

where f ∈ E [w]. This yields the invariant quantization Qσ′
0,2 for δ′ /∈ Σ′

0,2 = {0, 1,−n
2 + 1,−n

2 + 2}. Further,
using the explicit formula for the invariant quantization for 2nd order trace-free symbols (see e.g. [12]), we
obtain

Q̃σ̄′
2,1(f) = DA

[(
n + δ′ + 1

)(
n + δ′ + 2

)(
σ̄′)ab∇a∇b

− 2(w − 2)
(
n + δ′ + 1

)(
∇aσ̄

′)ab∇b + (w − 1)(w − 2)
(
∇a∇bσ̄

′)ab]
DAf

= −δ′(n + 2δ′ + 2
)(

n + δ′ + 1
)(

n + δ′ + 2
)(

σ̄′)ab∇a∇bΔf + lot.

That is, the previous display provides the invariant quantization Qσ̄′
2,1 for δ′ /∈ Σ′

2,1 = {0,−n
2 − 1,−(n + 1),

−(n + 2)}.
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On locally conformally flat manifolds, we describe a construction which maps gen-
eralised conformal Killing tensors to differential operators which may act on any
conformally weighted tensor bundle; the operators in the range have the property
that they are symmetries of any natural conformally invariant differential operator
between such bundles. These are used to construct all symmetries of the conformally
invariant powers of the Laplacian (often called the GJMS operators) on manifolds
of dimension at least 3. In particular, this yields all symmetries of the powers of
the Laplacian �k, k ∈ Z > 0, on Euclidean space En . The algebra formed by the
symmetry operators is described explicitly. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3692324]

I. INTRODUCTION

Given a differential operator P, say on functions, it is natural to consider smooth differential
operators which locally preserve the solution space of P. A refinement is to seek differential operators
S with the property that P ◦ S = S′ ◦ P, for some other differential operator S′. In this case, we shall say
that S is a symmetry of P. On Euclidean n-space En with n ≥ 3, the space of first-order symmetries
of the Laplacian � is finite-dimensional with commutator subalgebra isomorphic to so(n + 1, 1),
the Lie algebra of conformal motions of En . Second-order symmetries have applications in the
problem of separation of variables for the Laplacian, see Ref. 41 and references therein; on E3 the
second-order symmetries were classified by Boyer et al.4

Symmetries are closely related to conformal Killing tensors and their generalisations, see
Theorem 2.1 below. Such operators also play a role in physics.40, 44 Partly motivated by these links,
Eastwood has recently given a complete algebraic description of the symmetry algebra for the
Laplacian on En≥3.20 His treatment uses conformal geometry and, in particular, a treatment of the
conformal Laplacian due to Hughston and Hurd35 based on the classical model of the conformal
n-sphere as the projective image of an indefinite quadratic variety in Rn+2. There are close links to
the Fefferman-Graham ambient metric,23, 24 which provides a curved version of this model, and the
ideas of Maldacena’s AdS/CFT correspondence34, 39, 45 (as explained in Ref. 20). Eastwood’s work
was extended in Ref. 21, via similar techniques, where the authors found the symmetry algebra for
�2 on En≥3.

Here, the first main result of the article is a simultaneous treatment of all powers of the Laplacian
on pseudo-Euclidean space Es,s ′

(i.e., Rs+s ′
equipped with a constant signature (s, s′) metric) with

s + s′ ≥ 3; we obtain an explicit construction of all symmetries and a description of the algebra
these generate. See Theorems 2.1 and 2.5. (In lower dimensions a corresponding result is not to

a)Electronic mail: gover@math.auckland.ac.nz.
b)Electronic mail: silhan@math.muni.cz.
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be expected as, in that case, the space of conformal Killing vectors is infinite-dimensional). As
will shortly be clear, the problem is fundamentally linked to conformal geometry. Thus it is natural
to also formulate and treat analogous questions for the conformally invariant generalisations Pk

of the powers �k (k ∈ Z>0) on conformally flat manifolds, and we do this; via Theorem 2.4 and
surrounding discussion we see that the algebra is again described by Theorem 2.5. In dimension
four, the operators Pk were discussed in Ref. 36. Conformally curved versions in general dimensions
(n ≥ 2k if even) are due to Paneitz (k = 2) (Ref. 42) and Graham-Jenne-Mason-Sparling,33 and have
been the subject of tremendous recent interest in both the mathematics and physics community.16, 17, 37

For convenience, we refer to these operators as the GJMS operators.
A main point of the current article is to develop a universal approach to the problem

of operator symmetries; the constructions and theory here are designed to be easily adapted
to study the symmetries of other classes of differential operators. Indeed with minor adap-
tion our techniques also apply to the entire class of parabolic geometries. First, rather than
work on a higher dimensional “ambient” manifold (which is an idea well developed only for
conformal geometry and a few other structures), we calculate directly on the n-dimensional
space and use tractor calculus, many tools of which apply simultaneously to all parabolic
geometries.1, 10, 27 Using this machinery, we construct a map which takes solutions of certain
overdetermined partial differential equations, PDE’s (solutions called generalised conformal Killing
tensors) to differential operators which have the universality property that they are symme-
tries for any conformally invariant operator between irreducible bundles. This is Theorem 5.2.
These universal symmetry operators form an algebra under formal composition; by construction
this is a quotient of the tensor algebra

⊗
so(s + 1, s ′ + 1). On the other hand for the case of GJMS

operators, Theorem 2.4 states that, conversely, all symmetries arise from the operators in this alge-
bra. Determining the algebra of symmetries of a given order 2k GJMS operator Pk then proceeds in
two steps. The order 2k determines the domain (density) bundle (for Pk and hence) on which the
universal symmetry operators should act. From the latter we obtain an ideal of identities satisfied
by the universal symmetries; the ideal is specific to the domain. This is the subject of Theorem 7.1.
A further ideal is generated by symmetries that are trivial in a sense to be made precise below,
see Theorem 7.2. The result is an explicit description in Theorem 2.5 of the ideal, the quotient of⊗

so(s + 1, s ′ + 1) by which yields the symmetry algebra of Pk.

II. THE MAIN THEOREMS

A. Symmetries and triviality

Throughout we shall restrict to conformally flat pseudo-Riemannian manifolds (M, g) of dimen-
sion n ≥ 3 and signature (s, s′), or the conformal structures (M, [g]) that these determine. In the spirit
of Penrose’s abstract index notation,43 we shall denote write Ea as an alternative notation for TM
and Ea for the dual bundle T*M. Thus, for example, Eab = ⊗2T ∗M . According to the context, we
may also use concrete indices from time to time. That is indices referring to a frame. All manifolds,
structures, functions, and tensor fields will be taken to be smooth (i.e., to infinite order) and all
differential operators will be linear with smooth coefficients. Since our later treatment generalises
easily, we define here the notion of symmetry in greater generality than is strictly needed for our
main results. This also serves to indicate the general context for the developments.

Suppose that P : V → W is a smooth differential operator between (section spaces of) irre-
ducible bundles. (In our notation we shall not distinguish bundles from their smooth section spaces.)
We shall say that linear differential operators S : V → V and S′ : W → W form a (S, S′) a symmetry
(pair) of P if the operator compositions PS and S′P satisfy

P S = S′ P.

An example is the pair (TP, PT), where T is a differential operator T : W → V . However for obvious
reasons such symmetries shall be termed trivial.

Following the treatment of � and �2 of Refs. 20 and 21, we note that there is an algebraic
structure on the symmetries modulo trivial symmetries as follows. First, the symmetries of P form a
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vector space under the obvious operations. Then if (S1, S′
1) and (S2, S′

2) are symmetries, then so too
is the composition (S1S2, S′

1S′
2). So the symmetries of P form an algbera S̃. Next we say that two

symmetries (S1, S′
1) and (S2, S′

2) are equivalent, (S1, S′
1) ∼ (S2, S′

2), if and only if (S1 − S2, S′
1 − S′

2)
is a trivial symmetry. It is easily verified that trivial symmetries form a two-sided ideal in the algebra
S̃ and the quotient by this yields an algebra S. For the case that P is a GJMS operator it is this
algebra that we shall study in detail.

To simplify our discussion, we shall often work with just the first operator S : V → V in a
symmetry pair. That is an operator S : V → V shall be called a symmetry if there exists some
S′ : W → W that makes (S, S′) a symmetry as above. (In fact for the main class of operators we
treat it is easily verified that S′ is uniquely determined by S.) Note that with this language, and in
the class of cases satisfying V = W , the composition PS is a trivial symmetry if and only if S is a
symmetry.

B. Symmetries of �k on Es,s′

We shall write Es,s ′
to mean Rn , n = s + s′, equipped with the standard flat diagonal signature

(s, s′) metric g; in the s = n, s′ = 0 case this is n-dimensional Euclidean space. Here and throughout
we shall make the restriction n ≥ 3. In this setting the Levi-Civita connection ∇ is flat and, with
tensors expressed in terms of the standard Rn coordinates xi, the action of ∇ i on these agrees with
∂/∂xi. We shall use the metric gij and its inverse gij to lower and raise indices in the usual way. For
example, and capturing also our sign convention for the Laplacian, � = gij∇ i∇ j = ∇ i∇ i. (We use
the summation convention here and below without further mention.)

Recall that a vector field v is a conformal Killing field (or infinitesimal conformal isometry) if
Lvg = ρg for some function ρ. Otherwise written, this equation is

∇ iv j + ∇ jvi = ρgi j ,

and so, for solutions, ρ = 2div v/n. Suppose now that ϕ is a symmetric trace-free covariant tensor
satisfying

∇(i · · · ∇lϕm···n) = g(i jρk···n), with |{i, · · · , l}| an odd integer (1)

for some tensor ρk. . . n, and where φ(i. . . n) indicates the symmetric part of the tensor φi. . . n. Then,
following Ref. 20, we shall term ϕ a generalised conformal Killing tensor.

In Sec. V below we shall construct a canonical 1-1 map

ϕ �→ (Sϕ, S′
ϕ), (2)

which takes solutions of (1) to symmetries of �k, see Definition 5.1 and Theorem 5.2 (which, in
fact, deal with a far more general setting). Although we defer the construction of (2), let us already
term (Sϕ, S′

ϕ) the canonical symmetry corresponding to ϕ. Our main classification result is that all
symmetries of �k arise this way, and this is established in Theorem 6.4. Putting these results together,
on Es,s ′

we have the following.

Theorem 2.1: Let us fix k ∈ Z+. For the Laplacian power �k on Es,s ′
we have the following.

For each ϕ, a solution of (1), there is canonically associated a symmetry (Sϕ, S′
ϕ) for �k with Sϕ and

S′
ϕ each having leading term

ϕa1...ap (∇a1 · · · ∇ap )�r ,

p ∈ Z≥0, r ∈ {0, 1, . . . , k − 1}.
Modulo trivial symmetries, any symmetry of �k is a linear combination of such pairs (Sϕ, S′

ϕ),
with various solutions ϕ of (1) as above.

C. Conformal geometry and the GJMS operators

Although the question of symmetries of �k is not phrased in terms of conformal geometry, it
turns out that there is a deep connection. According to Theorem 2.1 above, all symmetries of �k arise
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from the solutions of Eq. (1). As we shall explain, these equations are each conformally covariant,
and in fact this class of equations can only be fully understood via consideration of their conformal
properties. First note that we may alternatively write Eq. (1) as

∇(b0 · · · ∇b2r ϕa1...ap)0 = 0,

where we have lowered the indices for convenience, and ( . . . )0 indicates the trace-free part over
the enclosed indices. For a given (say symmetric) tensor taking the trace-free part is a conformally
invariant notion. Then, for example, in the case of r = 0 this is the well-known conformal Killing
tensor operator. In that case, if (on any pseudo-Riemannian manifold (M, g) of the dimension n) we
replace the metric g with the conformally related ĝ := e2ϒ g, where ϒ ∈ C∞(M), and replace ϕ with
ϕ̂ := e2pϒϕ, then

∇ ĝ
(b0

ϕ̂a1...ap)0 = e2pϒ∇(b0ϕa1...ap)0 .

One may think of ϕ here as representing a density valued tensor of weight 2p. Recall that
on a smooth manifold, the density bundles E[w] are the bundles associated with the frame bundle
by one-dimensional (real) representations arising as the roots (or powers) of the square of the
determinant representation. These representations and the associated bundles are thus naturally
parametrised by weights w from R. These weights are normalised so that E[−2n] ∼= (�nT ∗M)2,
and with this normalisation the weights are often called conformal weights. Note that (�nT*M)2

is trivialised by a choice of metric and hence so are all the line bundles E[w]. There is a section
ϕ̃ of E(a1···ap)0 [2p] = E(a1···ap)0 ⊗ E[2p] which, in the trivialisation of E[2p] afforded by g, has the
component ϕ, while ϕ̃ has the component ϕ̂ = e2pϕ with respect to the trivialisation from ĝ. Since
the Levi-Civita connection (for any metric g) may be viewed as a connection on the principal frame
bundle it follows immediately that it yields a connection on density weighted tensor bundles. Thus
dropping the tilde, for ϕ ∈ E(a1···ap)0 [2p] we have ∇ ĝ

(b0
ϕa1...ap)0 = ∇(b0ϕa1...ap)0 . This means that the

operator descends to a well-defined differential operator on a conformal manifold (M, c). Here (M, c)
means a manifold equipped with just an equivalence class of conformally related metrics: if g, ĝ ∈ c,
then ĝ = e2ϒ g for some ϒ ∈ C∞(M).

Henceforth, it will be convenient to use the notation and language of conformal densities,
for further details and conventions see, e.g., Refs. 9 or 30. In particular, below we shall use the
conformal metric gab to raise and lower indices. On a conformal manifold, this is a tautological
section of E(ab)[2] = E(ab) ⊗ [2] which gives an isomorphism Ea = Ea[0] ∼= Eb[2]. In particular, via
the conformal metric, we shall identify E(a1...ap)0 [2p + 2r ] and E (a1...ap)0 [2r ]. Note also that with these
conventions the Laplacian � is given by � = gab∇a∇b = ∇b∇b and so this carries a conformal
weight of − 2. (That is, the conformal Laplacian lowers the conformal weight by 2.)

From the partial classification of conformally invariant operators given in Ref. 22 (which uses
heavily the algebraic results of Ref. 3), one easily extracts the following result.

Proposition 2.2: For each pair (p, r), of non-negative integers, there is a conformally invariant
operator

E(a1...ap)0 [2p + 2r ] → E(b0...b2r a1...ap)0 [2p + 2r ]

ϕa1...ap �→ ∇(b0 · · · ∇b2r ϕa1...ap)0 + lot, (3)

where “lot” denotes lower order terms.

In fact, there is a larger class of similar operators, but we shall not need the even order analogues
of the operators above for our current discussion. An algorithm for generating explicit formulas for
these operators is given in Ref. 25 (in dimension four but same formulas hold in all dimensions,26

see also Refs. 13 and 7). The lower order terms are given by Ricci curvature and its derivatives; in
particular on Es,s ′

we recover the operator of (1). On any manifold, we shall term ϕ in the kernel
of (3) a (generalised) conformal (Killing) tensor. (The terminology generalised conformal Killing
tensor was introduced in Ref. 21 for solutions of (3) in the case p = 3. We use the same terminology
for solutions of (3) in the general case.)
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By construction the GJMS operator, Pk is conformally invariant.33 This means that it is a natural
operator on pseudo-Riemannian manifolds M that descends to a well-defined differential operator
on conformal structures

Pk : E[k − n

2
] → E[−k − n

2
].

Recall that we say (M, g) is locally conformally flat, if locally there is a metric ĝ, conformally related
to g, so that on this neighbourhood (M, ĝ ) is isometric to Es,s ′

. If (M, g) is locally conformally flat,
then in all dimensions n ≥ 3 the operators Pk exist for every k ≥ 1.

Definition 2.3: Let us fix a conformal manifold (M, c). Suppose that (S, S′) is a pair of differential
operators

S : E[k − n

2
] → E[k − n

2
] and S′ : E[−k − n

2
] → E[−k − n

2
]

on the given conformal manifold (M, c). If locally (i.e., in contractable neighbourhoods) on (M, c),
we have agreement of the compositions as follows:

Pk S = S′ Pk,

as operators on E[k − n
2 ], then we shall say that (S, S′) is a conformal symmetry (pair) of Pk on

(M, c).

Note that the definition does not require/impose naturality properties of the pair (S, S′). They
are simply required to be well-defined differential operators on the given (M, c).

For a given conformal manifold, and suitable natural number k, we may ask for some description
of all conformal symmetries of Pk. From Theorem 2.1, we have the following theorem. Here and
below, we use E (p)0

r as shorthand for the bundle E (a1...ap)0 [2r ] (and its section space). We will often
write ϕ

p
r to denote some section of this bundle.

Theorem 2.4: Let (M, c) be a (locally) conformally flat manifold of signature (s, s′). For each
nonzero ϕ ∈ E (p)0

r , p ∈ Z≥0, r ∈ {0, 1, . . . , k − 1}, a solution of (3), there is canonically associated
a nontrivial conformal symmetry (Sϕ, S′

ϕ) for Pk, with Sϕ and S′
ϕ each having leading term

ϕ
a1...ap
r (∇a1 · · · ∇ap )�r .

Modulo trivial symmetries, locally any conformal symmetry of Pk is a linear combination of
such pairs (Sϕ, S′

ϕ), for various solutions ϕ of (3), with p and r in the range assumed here.

The question of conformal symmetries is not a priori the same question as that addressed in
Theorem 2.1. However, using that S, S′ and Pk are well defined on (M, c), we may use any metric g
∈ c to calculate. This is a choice similar to choosing coordinates in order to calculate; indeed g gives
a trivialisation of the density bundles. Now, by working locally and choosing a flat metric, the result
here follows immediately from Theorem 2.1, since by the definition of the canonical symmetries
in Definition 5.1 and Theorem 5.2, they are well defined on locally conformally flat conformal
manifolds.

D. Algebraic structure

Let us denote by Ak the algebra of symmetries of �k on Es,s ′
modulo trivial symmetries. As

usual we write n = s + s′. It follows from Theorem 7.1, we have the vector space isomorphism

Ak
∼=

∞⊕
j=0

k−1⊕
i=0

K j
i , (4)

where K j
i ⊆ E ( j)0

i is the space of solutions of (3) with r = j and p = i.
Now we turn to the algebra structure of Ak . It is well known,38,14 and given explicitly by (23)

below, that the (finite-dimensional) spacesK j
i are isomorphic to irreducible g := sos+1,s ′+1–modules
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Kj
i
∼=

j

· · ·
· · ·

2i

· · · 0 (5)

in the notation of Young diagrams. (Using the highest weights, expressed as a vector of coefficients
over the Dynkin diagram as in Ref. 2, K j

i corresponds to the coefficient 2i over the first node, the
coefficient j over the second one and with remaining coefficients equal to zero. At least this applies
in dimensions at least five, but there is an obvious adjustment in lower dimensions.)

We follow Ref. 21 in the discussion of the algebraic structure of Ak . Decomposing the tensor

product of two copies of g = , we obtain

g ⊗ g =
0
⊕ 0 ⊕ R ⊕

g g

⊕
0

⊕

g ∧ g

(6)

where � is the symmetric tensor product. All these components occur with multiplicity one. We
shall need notation for the projections of V1 ⊗ V2 ∈ g ⊗ g to some of the irreducible components on
the right-hand side of the previous display. In particular, we put

V1 V2 ∈
0
, V1 • V2 ∈ 0, V1, V2 R and [V1, V2] ∈ , (7)

and we write the same notation for the projections. Here, the � denotes the Cartan product, 〈,〉
the Killing form on g (normalised as in Ref. 21), and [,] is the Lie bracket. These projections are
described explicitly in (41) below. There is also the inclusion

2k = . . .

2k

0 →
2k

⊂ ⊗ ⊗ · · · ⊗

2k

,

see (44) for the explicit form. That is, there is an (obviously unique) irreducible component in
⊙2k g

of the type specified on the left-hand side.
With this notation, we obtain the following generalisation of Theorem 3 Ref. 21:

Theorem 2.5: The algebra Ak is isomorphic to the tensor algebra
⊗

g modulo the two-sided
ideal generated by

V1 ⊗ V2 − V1 � V2 − V1 • V2 − 1

2
[V1, V2] + (n − 2k)(n + 2k)

4n(n + 1)(n + 2)
〈V1, V2〉, V1, V2 ∈ g (8)

and the image of �2k� in ⊗2kg.

Note that, from Theorem 2.4,Ak is also the algebra of local symmetries of Pk on any conformally
flat conformal manifold of dimension n.

III. CONFORMAL TRACTOR CALCULUS

We first recall the basic elements of tractor calculus following Refs. 9 and 30.
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A. Tractor bundles

Let M be a smooth manifold of dimension n ≥ 3 equipped with a conformal structure (M, c) of
signature (s, s′). Since the Levi-Civita connection is torsion-free, the (Riemannian) curvature Rab

c
d

is given by [∇a, ∇b]vc = Rab
c

dv
d , where [ · , · ] indicates the commutator bracket. The Riemannian

curvature can be decomposed into the totally trace-free Weyl curvature Cabcd and a remaining
part described by the symmetric Schouten tensor Pab, according to Rabcd = Cabcd + 2gc[a Pb]d

+ 2gd[b Pa]c, where [. . . ] indicates antisymmetrisation over the enclosed indices. We shall write
J := Pa

a. The Cotton tensor is defined by

Aabc := 2∇[b Pc]a .

The standard tractor bundle over (M, [g]) is a vector bundle of rank n + 2 defined, for each g
∈ c, by [E A]g = E[1] ⊕ Ea[1] ⊕ E[−1]. If ĝ = e2ϒ g (ϒ ∈ C∞(M)), we identify (α,μa, τ ) ∈ [E A]g

with (̂α, μ̂a, τ̂ ) ∈ [E A]ĝ by the transformation⎛
⎝ α̂

μ̂a

τ̂

⎞
⎠ =

⎛
⎝ 1 0 0

ϒa δa
b 0

− 1
2ϒcϒ

c −ϒb 1

⎞
⎠

⎛
⎝α

μb

τ

⎞
⎠ , (9)

where ϒa := ∇aϒ . These identifications are consistent upon changing to a third metric from the
conformal class, and so taking the quotient by this equivalence relation defines the standard tractor
bundle T , or E A in an abstract index notation, over the conformal manifold. The bundle E A admits
an invariant metric hAB of signature (s + 1, s′ + 1) and an invariant connection, which we shall
also denote by ∇a, preserving hAB. In a conformal scale g, these are given by

h AB =
⎛
⎝ 0 0 1

0 gab 0
1 0 0

⎞
⎠ and ∇a

⎛
⎝ α

μb

τ

⎞
⎠ =

⎛
⎝ ∇aα − μa

∇aμb + gabτ + Pabα

∇aτ − Pabμ
b

⎞
⎠ . (10)

It is readily verified that both of these are conformally well-defined, i.e., independent of the choice
of a metric g ∈ [g]. Note that hAB defines a section of EAB = EA ⊗ EB , where EA is the dual bundle
of E A. Hence, we may use hAB and its inverse hAB to raise or lower indices of EA, E A and their tensor
products.

In computations, it is often useful to introduce the “projectors” from E A to the components
E[1], Ea[1], and E[−1] which are determined by a choice of scale. They are, respectively, denoted
by X A ∈ EA[1], Z Aa ∈ EAa[1], and YA ∈ EA[−1], where EAa[w] = EA ⊗ Ea ⊗ E[w], etc. Using the
metrics hAB and gab to raise indices, we define XA, ZAa, YA. Then we immediately see that

YA X A = 1, Z Ab Z A
c = gbc, (11)

and that all other quadratic combinations that contract the tractor index vanish. In (9) note that α̂ = α

and hence XA is conformally invariant. Using this notation the tractor VA given by

[V A]g =
⎛
⎝α

μa

τ

⎞
⎠

may be written

V A = αY A + μa Z A
a + τ X A. (12)

The curvature � of the tractor connection is defined by

[∇a,∇b]V C = �ab
C

E V E

for V C ∈ EC . Using (10) and the formulas for the Riemannian curvature yield

�abC E = ZC
c Z E

eCabce − 2X [C Z E]
e Aeab. (13)
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In the following, we shall also need two-form tractors, that is �2T , or in abstract indices E[AB].
To simplify notation, we shall set the rule that indices labelled sequentially by a superscript are
implicitly skewed over and then denote skew pairs with a bold multi-index. Here, we shall need
this only for valence two forms. This convention does not apply to subscripts. That is, A0A1 means
[A0 A1] = A but, e.g., the notation A1A2A3 does not assume any implicit projection to a tensor part.
The same convention will be used for tensor indices, i.e., [a0a1] means a0a1 = a.

With Ek[w] denoting the space of k-forms of weight w, the structure of EA = EA0 A1 is Refs. 6
and 31,

EA = E1[2] +
(
E2[2] ⊕ E[0]

)
+ E1[0]; (14)

this means that in a choice of scale the semidirect sums + may be replaced by direct sums and
otherwise they indicate the composition series structure arising from the tensor powers of (9).

In a choice of metric g from the conformal class, the projectors (or splitting operators) X, Y, Z
for EA determine corresponding projectors X,Y ,Z,W for EA, These execute the splitting of this
space into four components and are given as follows:

Y = Y a1

A0 A1 = YA0 Za1

A1 ∈ Ea1

A [−2],

Z = Z a1a2

A1 A2 = Z a1

A1 Z a2

A2 ∈ Ea
A[−2],

W = WA0 A1 = X A0 YA1 ∈ EA[0],

X = X a1

A0 A1 = X A0 Z a1

A1 ∈ Ea1

A [0].

Further, they satisfy XA
aY

c
A = 1

2δc
a , ZA

aZ
c
A = δc1

a1δ
c2

a2 , and W AWA = − 1
2 id, the remaining contrac-

tions are zero. The explicit formula for the tractor connection is then determined by how it acts on
these (cf. Refs. 31 and 6),

∇pY
a1

A0 A1 = Ppa0Z
a0a1

A0 A1 + P a1

p WA0 A1 ,

∇pZ
a0a1

A0 A1 = −2δa0

p Y a1

A0 A1 − 2P a0

p X a1

A0 A1 , (15)

∇pWA0 A1 = −gpa1Y a1

A0 A1 + Ppa1X a1

A0 A1 ,

∇pXA0 A1 = gpa0Z a0a1

A0 A1 − δa1

p WA0 A1 .

B. Key differential operators

Given a choice of conformal scale, Thomas’ tractor-D operator1 DA : EB···E [w] → EAB···E [w
− 1] is defined by

DAV := (n + 2w − 2)wYAV + (n + 2w − 2)Z Aa∇a V − X A(�V + wJ)V . (16)

This is conformally invariant, as can be checked directly using the formulas above (or alternatively
there are conformally invariant constructions of D, see, e.g., Ref. 27). Acting on sections of weight
w �= 1 − n/2 (16) is a differential splitting operator since there is a bundle homomorphism which
inverts D. In this case, it is a multiple of X A : EAB···E [w − 1] → EB···E [w]; XADA is a multiple
of the identity on the domain space. This splitting operator is particularly important on E[1], the
densities of weight 1: for non-vanishing σ ∈ E[1], g := σ−2g is Einstein if and only if DAσ is
parallel for the tractor connection. The point is that the tractor connection (10) gives a prolonged
system essentially equivalent to the equation ∇(a∇b)0σ + P(ab)0σ = 0 which controls whether the
metric g ∈ c is Einstein.1

The GJMS operators on conformally flat manifolds can easily be constructed using the tractor
D-operator. It turns out

(−1)k X A1 . . . X Ak Pk = DA1 . . . DAk on E•[−n/2 + k],
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see Ref. 27 for details. Here •, in E•, denotes any system of tractor indices (or so(h) tensor part
thereof).

In addition to the tractor-D operator DA, one has also the conformally invariant double-D
operator DA and its “square” D2

AB = −D(A
PD|P|B) defined as

DA = 2(wWA + X a
A∇a) : E•[w] −→ EA ⊗ E•[w], w ∈ R,

D2
AB = −(wh AB + X (A DB)) : E•[w] −→ E(AB) ⊗ E•[w], w ∈ R.

(17)

The operator DA (but with the opposite sign) was originally defined in Ref. 28. Note that,
2X [A0 DA1] = (n + 2w − 2)DA on E•[w]. We shall also need the commutation relation on E•[w],

[DA, X B] = −2DAB + (n + 2w)h AB (18)

from Ref. 27; alternatively this may be viewed as defining D as (one half of) the skew part of the
left-hand side.

Finally, some points of notation: In the following, we shall sometimes write ∇q to denote the
composition of q applications of ∇. By context it will be clear that q is not to be interpreted as an
abstract index. Next if V is a tensor bundle, or a tensor product of the standard tractor bundle, then
for F ∈ V we shall write F|� to denote the projection of the section F to the Cartan component (with
respect to the co(g) structure, or so(h) tensor structure, respectively) of the bundle V . For example,
on Es,s ′

equipped with the standard flat diagonal signature (s, s′) metric Eq. (3) may be expressed as
[∇2r + 1ϕ]|� = 0.

IV. THE DOUBLE-D AND CONFORMALLY INVARIANT OPERATORS

We work on (M, [g]), assumed to be locally conformally flat. We outline a rather general picture
here. The theorem below provides a general technique for the construction of symmetries of any
conformally invariant operator that acts between irreducible natural bundles. Moreover, since the
tools used are general in nature, this result indicates how to deal with symmetries of invariant
operators on a bigger class of structures, the so-called parabolic geometries.12 This will be taken up
elsewhere.

Consider a conformally invariant differential operator P : V → W between irreducible (or
completely reducible will suffice) natural bundles V and W . More specifically, we restrict only to
subbundles of (

⊗ Ea) ⊗ (
⊗ Eb) ⊗ E[w] which we shall term tensor bundles. The case of spinor

bundles is, however, completely analogous.
Assume for a moment the general (i.e., possibly curved) conformal setting. Following Ref. 10,

the double-D operator DA can be extended to all irreducible bundles (see the discussion on the
fundamental derivative below for details). This extension obeys the Leibniz rule, and since (17)
describes DA on E•[w], it remains to understand the action of DA on Ea

∼= Eb[−2]. In this case, we
obtain

DB fa = −2WB fa + 2Zb
Bgb0a fb1 + 2X b

B ∇b fa for fa ∈ Ea, (19)

where B is a multi-index, following the convention introduced in Sec. III.
Our use of D is linked to the following proposition. For a tangent vector ϕa ∈ Ea , we denote

by Lϕ the Lie derivative on sections of natural bundles. Recall E[w] is such a natural bundle, cf. the
definition of E[w] in Sec. II, as well as Ea and Eb.

Proposition 4.1: Let M be any conformally flat manifold and assume ϕa ∈ Ea is a conformal
Killing vector (i.e., a solution of (3)). Then there is a unique parallel tractor I A

ϕ ∈ EA such that
ϕa = 2X a

A I A
ϕ ,31 cf. Ref. (43). Then

I A
ϕ DA = Lϕ on (

⊗
Eb) ⊗ (

⊗
Ec) ⊗ E[w].

Proof: It is sufficient to verify the theorem on E[w] and Ea since both operators Lϕ and I A
ϕ DA

obey the Leibniz rule and Eb
∼= Ea[−2]. Using (17) and (43), we have I A

ϕ DA = ϕa∇a − 2
n (∇aϕ

a) on
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E[2]. Thus using (19) (and (43) below), we obtain

I B
ϕ DB fa = ϕb∇b fa + (∇[aϕb]) f b − 1

n
(∇bϕ

b) fa

= ϕb∇b fa − f b∇bϕa + f b
[1

2
(∇bϕa + ∇aϕb) − 1

n
gab∇cϕc

]
on fa ∈ Ea[2] ∼= Eb. The square bracket in the display is the conformal Killing operator, and thus
vanishes. The equality of Lϕ and I A

ϕ DA on E[w] is even simpler, and hence the general case
follows. �

Note it obvious from the proof that the proposition does not hold without the assumption that
ϕa ∈ Ea is a conformal Killing vector.

The conformal invariance of the operator P : V → W (between completely reducible, bundles
V and W) is given by the property LϕP = PLϕ for every conformal Killing field ϕa ∈ Ea . That is,
every conformal Killing vector ϕa provides a symmetry of the operator P.

As is well known, conformal invariance can equivalently be verified from a formula for the
operator P. In particular for each conformally invariant operator, and a choice of metric from
the conformal class, there is a formula in terms of the Levi-Civita connection ∇, its curvature,
and various algebraic projections which express the operator as a natural (pseudo-)Riemmanian
differential operator. The hallmark of conformal invariance is then that this operator is unchanged if
we use the same formula when starting with a different metric form the conformal class. Now, given
such a formula for P : V → W , we have also the (tractor coupled) operator P∇ : V ⊗ E• → W ⊗ E•
given by the same formula where ∇ is now assumed to be coupled Levi-Civita-tractor connection.
Then P∇ is also conformally invariant. We shall often write P instead of P∇ to simplify the notation.

Theorem 4.2: On a conformally flat manifold, let P : V → W be a conformally invariant
operator between completely reducible tensor natural bundles V and W . Then

P∇DA1 · · ·DAp = DA1 · · ·DAp P : V → EA1...Ap ⊗ W.

Proof: It is sufficient to prove the theorem in the (globally) flat case. First assume p = 1 and
consider a conformal Killing field ϕa ∈ Ea . Then Iϕ is parallel (see, e.g., Ref. 29 but this follows
here easily from the fact the standard tractor connection is flat). Then [P∇, I A

ϕ ] = 0 and using
Proposition 4.1 plus the fact that LϕP = PLϕ , from conformal the invariance of P, means that
I A
ϕ [DA, P∇ ] = 0 for every conformal Killing vector ϕa. The space of conformal Killing fields on

the conformally flat manifolds has the maximal dimension, i.e., the dimension of the bundle EA.
Therefore, [DA, P∇ ] = DA P − P∇DA = 0 on V . Now it follows from the definition of D that the
formulas for [DA, P∇ ] on V and E• ⊗ V formally coincide. Since [DA, P∇ ] = 0 on V , and the tractor
connection is flat, this formula yields a zero operator on every bundle E• ⊗ V . Using an obvious
induction, the theorem follows. �

Below we shall identify two-form tractor fields FA = FA1 A2 with endomorphism fields of the
standard tractor bundle according to the rule (F�f)B: = FB

PfP for fB ∈ EB . This also defines the
notation �. Moreover, we shall define � to be trivial on the bundles Ea and E[w], and then extend this
action to tensor products of EA, Ea , and E[w] by the Leibniz rule. Note that since F is skew it yields
an (pseudo-)orthogonal action pointwise and hence preserves the SO(p + 1, q + 1) decompositions
of tractor bundles.

Theorem 4.2: above is one of the primarily tools for our subsequent construction of symmetries.
However, there are some conceptual gains in linking this to some related results and so we complete
this section with these observations.

The double-D operator discussed above reflects a more general operator called fundamental
derivative from Ref. 10 (where it is called the fundamental-D operator). The specialisation of this to
conformal geometry provides, for any natural bundle V , a conformally invariant differential operator
D : V → A ⊗ V , where A = �2T is often called the adjoint tractor bundle (because it is modelled
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on g = sos+1,s ′+1). Since there is a natural inclusionA ↪→ End E• via �, we may form (( − 1)–times)
the symmetrisation of the contracted composition, to be denoted by

D2 : V → (EndV) ⊗ V.

In the abstract index notation, we write DA
B (or DA, using the identification A ∼= EA1 A2 ) for the

fundamental derivative and so D2
AB = −DC

(ADB)C .
We shall use D only on weighted tensor bundles V ⊆ (

⊗ Ea) ⊗ (
⊗ Eb) ⊗ E•[w]. Recall the

fundamental derivative obeys the Leibniz rule and actually DA = DA on irreducible bundles. (In
fact, the double-D was defined in such way in Ref. 10.) To show the difference between D and D
and, more generally, the analogue of (17) we shall need certain special tractor sections and their
corresponding algebraic actions on tractor bundles as follows:

HAB = h A0 B0 h A1 B1 , HA� = h A0 B0 h A1 B1 �B,

H̃ADBC = h(A|B0|hD)C0 hB1C1 , H̃AD�� = h(A|B0|hD)C0 hB1C1�B �C (20)

where, as usual, we skew over the index pairs A0A1, B0B1, and C0C1. Here, the subscript of �

indicates which skew symmetric component is considered as an endomorphism. That is, for example,
(HA� f )C = h A0C f A1 for fC ∈ EC , and this extends to tensor powers of the tractor bundle by the
Leibniz rule. It also indicates the order of applications of these endomorphisms in the case of H̃.

We need D only up to a (nonzero) scalar multiple and our choice will differ from Ref. 8 by − 1.
Explicit formulas of D and D2 on weighted tractor bundles E•[w] are given by

DA = 2(wWA + X a
A∇a + HA�),

D2
AD = −(wh AD + X (A DD) + 4h(A|B0|DD)B1 �B − 4H̃AD��), (21)

where we skew over [B0B1] and �B indicates the skewed symmetric component which is considered
as an endomorphism. That is, DA = DA + 2HA�.

Corollary 4.3: Assume the locally conformally flat setting. Let P : V → W be a conformally
invariant operator between irreducible weighted tensor bundles V and W . Then

P∇ DA1 · · ·DAp = DA1 · · ·DAp P : V → EA1...Ap ⊗ W.

Proof: We shall use an induction. The case p = 1 is obvious as DA = DA on V and W . Assume
the corollary holds for a fixed integer p. Then

DA0DA1 · · ·DAp = DA0DA1 · · ·DAp + 2HA0�DA1 · · ·DAp .

The operator P commutes with the first term on the right-hand side using [P,DA0 ] = 0 and the
inductive assumption. Since the second term involves only DA1 · · ·DAp with some additional trace
factors, P commutes with the second term (using the induction) as well. �

Lemma 4.4: Assume the locally conformally flat setting. Then [DA,DB] = 0 on V ⊗ E• for V
irreducible.

Proof: From (17) and (21), we obtain

[DA,DB] = [DA,DB] − 2DAHB� + 2HB�DA = [DA,DB] + 4hB0 A0DB1 A1 .

Thus contracting arbitrary sections I A ∈ EA, Ī B ∈ EB into the previous display we get

I A Ī B[DA,DB] = I A Ī B[DA,DB] + 4I A1 P ĪP
B1DA1 B1 .

We put [I, Ī ]C := 4I C0 P ĪP
C1

. On the one hand, I A Ī B[DA,DB] is given in, Proposition, p. 21 of
Ref. 10. On the other hand, a direct computation verifies the statement on E•[w], cf. (40) below.
Therefore by restricting to this case (of E•[w]), it follows that our notation [I, Ī ] coincides precisely
with {I, Ī } used in Ref. 10. Thus using, Proposition, p. 21 of Ref. 10 on V ⊗ E•[w], the lemma
follows.

�
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Remark 4.5: There is also a more conceptual proof of the previous corollary (thus also of
Theorem 4.2). Motivated by, Theorem 3.3 of Ref. 10, we note that, at each point x ∈ M, the section

D
(k)

σ := (σ,Dσ,D(2)σ = DDσ, . . . ,D(k)σ ) ∈ A(k)
(V) ⊆ V ⊕ EA ⊗ V ⊕ . . . ⊕

k⊗
EA ⊗ V

contains the data of the entire k-jet of σ ∈ V . Note although here we assume V is irreducible,

the operator D
(k)

is defined also on bundles of the form V ⊗ E•. From the general theory, the

subbundle A(k)
(V) (defined in the obvious way by the display) is an induced bundle of a principle

H–bundle where H ⊆ SO(s + 1, s′ + 1) is a parabolic subgroup. It is straightforward to argue

that any conformally invariant k-order operator on V is given by D
(k)

followed by a suitable H-
homomorphism � on this subbundle. We denote this homomorphism by �P in the case of the
operator P.

Our aim is to commute P = �P ◦ D
(k)

and DB. More precisely, we put

P∇ := (id |EB ⊗ �P ) ◦ D
(k)

: EB ⊗ V → EB ⊗ W.

Observe the formulas for D
(k)

: V → A(k)
(V) and D

(k)
: EB ⊗ V → EB ⊗ A(k)

(V) are formally the
same. (Note the implicit ∇ is interpreted as the coupled Levi-Civita-tractor connection in the latter
case). That means also the formulas for P : V → W and P∇ : EB ⊗ V → EB ⊗ W are given by the
same formal expression. Hence our definition of P∇ coincides with that given before Theorem 4.2.

Now we are ready to show that DB P = P∇DB on V , i.e.,

(�p ⊗ id |EB ) ◦ D
(k)DB = DB

(
�p ◦ D

(k))
: V → EB ⊗ W.

Clearly DB�P = (�P ⊗ id |EB )DB. Since [DB,DA] = 0 from Lemma 4.4 and DB preserves sub-
bundles (of the space DB acts on), (�P ⊗ id |EB )DA1 . . .DB . . .DAi is conformally invariant and the
previous display follows.

Henceforth we shall write P instead of P∇ for simplicity. Finally note although we have shown
[DB, P] = 0 only on an irreducible V , the same reasoning shows [DB, P] = 0 also on bundles
V ⊗ E•. Therefore, this remark offers an alternative proof of the previous corollary (thus also of
Theorem 4.2).

The previous results provide an obvious way to construct symmetries of conformally invariant
operators. Assume the section

I A1...Ap B1 B ′
1...Br B ′

r ∈ EA1...Ap B1 B ′
1...Br B ′

r

is parallel. Then from Theorem 4.2 and Corollary 4.3 the differential operators

S = I A1...Ap B1 B ′
1...Br B ′

rDA1 . . .DApD2
B1 B ′

1
. . .D2

Br B ′
r

and

S = I A1...Ap B1 B ′
1...Br B ′

rDA1 . . .DApD
2
B1 B ′

1
. . .D2

Br B ′
r

(22)

commute with P. That is S and S are symmetries of the operator P.

Proposition 4.6: Assume the tractor I A1...Ap B1 B ′
1...Br B ′

r is parallel and irreducible, I = I|�. Then
S = S on E[w].

Proof: Consider the parallel and irreducible tractor I A1...Ap B1 B ′
1...Br B ′

r and the symmetry S from
(22). Since DA = DA + 2HA�, the difference

DA1
DA2

. . .DAp
D2

B1 B ′
1
. . .D2

Br B ′
r
− DA1

DA2
. . .DAp

D2
B1 B ′

1
. . .D2

Br B ′
r

lives in the trace part of EA1...Ap B1 B ′
1...Br B ′

r
[w], cf. (20). Therefore, this difference is killed after

contraction with I
A1...Ap B1 B ′

1...Br B ′
r

ϕ . Repeating this argument for DA2 , . . . ,DAp , we obtain

S = I A1...Ap B1 B ′
1...Br B ′

rDA1
. . .DAp

D2
B1 B ′

1
. . .D2

Br B ′
r

: E[w] → E[w].
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Now we replace D2
B1 B ′

1
in the previous display by D2

B1 B ′
1
. Note I A1...Ap B1 B ′

1...Br B ′
r commutes with

DAi and consider I A1...Ap B1 B ′
1...Br B ′

r contracted with

D2
B1 B ′

1
D2

B2 B ′
2
. . .D2

Br B ′
r
− D2

B1 B ′
1
D2

B2 B ′
2
. . .D2

Br B ′
r

= −(
4h(B1|C0|DB ′

1)C1�C − 4H̃B1 B ′
1
��

)
D2

B2 B ′
2
. . .D2

Br B ′
r
,

where we have used (21) and (17). The second term in the round brackets on the right-hand side van-
ishes after the contraction (using trace-freeness of I again) so it remains to contract I A1...Ap B1 B ′

1...Br B ′
r

with

4hC0(B1DB ′
1)C1�CD2

(B2 B ′
2
. . .D2

Br B ′
r ) = 4(r − 1)h(B2 B1DB ′

1

PD2
|P|B ′

2
. . .D2

Br B ′
r )

−4(r + 1)D(B ′
1 B2

D2
B1 B ′

2
. . .D2

Br B ′
r ).

Here, we have used the fact that the indices B1 B ′
1 . . . Br B ′

r of I are symmetric (because I is irre-
ducible). Now the second term on the right-hand side is zero due to skew symmetry of indices of
DB ′

1 B2
and the first term vanishes after contraction with I which is trace-free. Repeating the same

argument for D2
B1 B ′

2
, . . . ,D2

Br B ′
r
, the proposition follows. �

Note an analogous statement to the proposition above holds, where E[w] is replaced by any
irreducible bundle V . This may be proved along the same lines as in the treatment above. However,
since the details are technical and not required here, this proof is omitted.

Finally note the operators given by (22) are also well defined on bundles E•[w]. In this setting,
however, they yield generally different operators E•[w] → E•[w].

V. A CONSTRUCTION OF SYMMETRIES

We are now ready to construct canonical symmetries. For a section ϕ
a1...ap
r ∈ E (a1...ap)0 [2r ], we

shall define the operators (Sϕ, S′
ϕ) where Sϕ and S′

ϕ have leading term ϕ
a1...ap
r ∇a1 · · · ∇ap �

r . To do
this, we use the bijective correspondence between the linear space of solutions of (3) and certain
finite-dimensional g–modules, cf. the discussion around (4). Explicitly, this is given by differential
prolongation in the form of a differential splitting operator E (a1...ap)0 [2r ] → EA1...Ap B1 B ′

1...Br B ′
r |�.

There are many ways of constructing this, but for our current purposes the splitting operator can
be conveniently expressed using the fundamental derivative. There is a certain operator C known as
the curved Casimir15 which is given by h ABD2

AB . (Properties of the splitting operators coming from
C will be used in Proposition 6.1.) This acts on any natural bundle and, in particular, on weighted
tractor bundles. It can thus be iterated and we shall use operators polynomial in C. In particular, one
gets the splitting operator as

ϕ
a1...ap
r �→ YA1

a1 · · ·YAp
ap Y B1 Y B ′

1 · · · Y Br Y B ′
r ϕ

a1...ap
r

Q−→ EA1...Ap B1 B ′
1...Br B ′

r , (23)

where Q is an operator polynomial in C, and hence is polynomial in D, see Refs. 15 and 32. We

shall denote the image by I
A1...Ap B1 B ′

1...Br B ′
r

ϕ ∈ EA1...Ap B1 B ′
1...Br B ′

r |�. The main point we need is that the
tractor Iϕ is parallel if and only if ϕ is a solution of the operator (3).

Definition 5.1: Given ϕ = ϕ
(a1...ap)0
r ∈ E (a1...ap)0 [2r ], r, p ≥ 0, we shall associate a differential

operator Sϕ as follows. Let Iϕ denote the tractor corresponding to ϕ, in the sense of the discussion
surrounding (23) above. Then via (22),

Sϕ := I
A1...Ap B1 B ′

1...Br B ′
r

ϕ DA1
. . .DAp

D2
B1 B ′

1
. . .D2

Br B ′
r
, (24)

is a well-defined differential operator Sϕ : V → V , for any weighted tensor-tractor bundle V .

Assume ϕ is a solution of (3), and so the tractor Iϕ is parallel. It follows immediately from
Theorem 4.2, and the fact that Iϕ is parallel, that Sϕ is a universal symmetry operator. That is, using
also that ϕ �→ Iϕ is a splitting operator, we have the following.
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Theorem 5.2: On a conformally flat manifold, let P : V → W be a conformally invariant oper-
ator between irreducible tensor bundles V and W , and suppose that ϕ = ϕ

(a1...ap)0
r ∈ E (a1...ap)0 [2r ], r,

p ≥ 0 is a solution of (3). Then with Sϕ : V → V and S′
ϕ : W → W given by (24), the pair (Sϕ, S′

ϕ)
is symmetry of P. Assuming P is the GJMS operator Pk then for ϕ �= 0 and r < k, this is a nontrivial
symmetry.

Proof: It remains to prove the last claim. Note that acting on any density bundle, ϕ is the
leading symbol of the operator (24). This follows from the construction of Sϕ and is also shown by
Proposition 6.1 (which we will come to later). Thus the leading term does not have �k as the right
factor for r < k. �

Note that Sϕ and S′
ϕ are not the same differential operators. The point is that (24) really defines

a family of differential operators parametrised by the space of domain bundles.
We shall henceforth only pursue the case that P is a GJMS operator. As mentioned in the proof

of the theorem, ϕ is then the leading symbol of the operator (24). Also note that in this case the use
of D and D2 rather than D and D2 (respectively) in (24) yields the same symmetry, as follows from
Proposition 4.6.

Remark: Consider an operator F : E[w] → E[w], of order p̃ ≥ 0, on a smooth conformal
manifold manifold (M, [g]) and its symbol ϕ̃(a1...ap̃) ∈ E (a1...ap̃). Then, via the conformal structure
[g] we may decompose ϕ̃ into irreducibles. Each irreducible component ϕ of ϕ̃ can be realised
as ϕ(a1...ap)0 ∈ E (a1...ap)0 [2r ] where p = p̃ − 2r . Thus we have also the operator Sϕ , constructed
as above except that we here do not require ϕ to solve (3). We may then take the difference
F − Sϕ : E[w] → E[w]. Now the whole procedure can be repeated for the operator F − Sϕ . It
is clear that after a finite number of steps we obtain the form F = ∑

ϕ ∈ USϕ for a (finite) index
set U ⊆ N. That is, given an operator F : E[w] → E[w] on a smooth manifold M, any conformal
structure on M yields a decomposition of F as a sum of canonical operators Sϕ .

In the other direction, the operators Sϕ provide the conformally invariant quantisation introduced
in Ref. 18, in particular the special case.18, 3.1] Also note Sec. IV shows how to rewrite the general
construction11 using an affine connection.

VI. CLASSIFICATION OF LEADING TERMS OF SYMMETRIES

According to the discussion following Theorem 2.4, the problem of conformal symmetries for
the GJMS operators (on locally conformally flat manifolds) is reduced to the setting of Theorem 2.1.
So throughout this section, we work on Es,s ′

equipped with the standard flat diagonal signature
(s, s′) metric g with s + s′ =: n ≥ 3.

All linear differential operators L : E[w] → E[w] may be expressed as sums of the form

L =
∑
p,r≥0

ϕ
a1...ap
r (∇a1 · · · ∇ap )�r , ϕ

a1...ap
r ∈ E (a1...ap)0 [2r ] = E (p)0

r . (25)

We shall describe the right-hand side here as a standard expression for L. Moreover, we shall
typically use the notation ϕ

p
r (�p∇)�r as a shorthand for the operator ϕ

a1...ap
r (∇a1 · · · ∇ap )�r in the

displayed sum (as the details of the internal index contractions are not important for our arguments).
We use the standard expressions as above to analyse the structure of potential symmetries and

their compositions with �k. In particular, we shall use the following properties/descriptions of a
given coefficient ϕ

p
r . We shall write o(ϕ p

r ) = p + 2r and term this the formal order of ϕ
p
r and �(ϕ p

r )
= p + r which will be termed level of ϕ

p
r . (These reflect properties of terms ϕ

a1...ap
r (∇a1 · · · ∇ap )�r

and how they appear naturally in appropriate tractor formulas. However, these quantities are fully
determined by the coefficients ϕ

p
r , so it is sufficient to consider formal order and level of coefficients.)

We also say
[ p

r
]

is the type of ϕ
p
r . We shall write o(R) = a and �(R) = b if all terms of a differential

operator R : E[w] → E[w] are of the formal order at most a, respectively, level at most b. Finally,
if L is a symmetry of �k, then we shall say L is a normal symmetry (of �k) if r < k for all terms in
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the standard expression (25). Modulo trivial symmetries, any symmetry of �k may be represented
by a normal symmetry. (More generally, this holds for all operators on functions, cf. the remark
following Proposition 6.1.)

Further, we shall need a suitable ordering of the terms in a standard expression. This will be
defined via the coefficients as follows:

ϕ p
r � ψ

p′
r ′ iff �(ϕ p

r ) < �(ψ p′
r ′ ) or

(
�(ϕ p

r ) = �(ψ p′
r ′ )

) ∧ (
o(ϕ p

r ) < o(ψ p′
r ′ )

)
. (26)

Since the coefficient ϕ
p
r determines a corresponding term in the standard expression completely, we

shall use the ordering � for both coefficients and terms of an operator (25).
In the following, we shall use the terminology the greatest term (or coefficient) with respect

to the ordering �, the leading term (i.e., the term of the highest formal order o) and the term of
highest level, which refers to the quantity � defined above. We would like to emphasise that all these
characteristics of terms are generally different.

First, we shall study the canonical symmetries. Since these are constructed using tractor operators
we need a further weight type measure as follows. In the tractor formulas, we use strings of the
symbols X, Y, Z and X, Y , Z and W from Sec. III A. We define the homogeneity h(ω) of a string
ω ∈ {X, Y, Z ,X,Y ,Z,W } by

h(Y ) = 1, h(Z ) = 0, h(X ) = −1, h(Y ) = 1, h(Z) = h(W ) = 0, h(X) = −1, (27)

and h(ω1ω2) := h(ω1) + h(ω2),

where ω1ω2 means a concatenation of the strings ω1 and ω2.
Now we are set to describe properties of the canonical symmetries (and more generally operators

of the form (24)), as follows.

Proposition 4.1: Consider ϕ = ϕ
p
r ∈ (�pT M) ⊗ E[2r ] and the corresponding operators Sϕ :

E[w] → E[w] and S′
ϕ : E[w′] → E[w′], w,w′ ∈ R given by (24). Then, in the standard expressions

for Sϕ and S′
ϕ , the following properties hold:

(i) Sϕ and S′
ϕ have the same leading term ϕ.

(ii) �(S′
ϕ) = �(Sϕ) = r + p = �(ϕ p

r ), that is every term ψ of Sϕ or S′
ϕ satisfies �(ψ) ≤ p + r.

Moreover, the greatest terms of Sϕ and S′
ϕ have the coefficient ϕ.

(iii) o(S′
ϕ) = o(Sϕ) = p + 2r = o(ϕ p

r ), that is every term ψ of Sϕ or S′
ϕ satisfies o(ψ) ≤ p + 2r.

Moreover, the equality happens only for ψ = ϕ.

(iv) Every term ψ of type
[ p̄

r̄
]

of Sϕ or S′
ϕ satisfies r ≥ r̄ .

Remark: We shall actually use the proposition only in the case [∇2r + 1ϕ]|� = 0, i.e., when
(Sϕ, S′

ϕ) is the symmetry pair. But note that part (iv) means, in particular, that any operator L on
functions satisfies, modulo trivial symmetries of �k that r < k for all terms in the standard expression
(25) of L.

Proof: First note that because Sϕ and S′
ϕ are given by the same operator (24) acting on different

density bundles, it turns out to be sufficient to establish facts only for Sϕ . From (24) Sϕ is defined as

the contraction of the parallel tractor I
A1...Ap B1 B ′

1...Br B ′
r

ϕ , corresponding to ϕ, with the operator

D̃A1...Ap B1 B ′
1...Br B ′

r
:= DA1

. . .DAp
D2

B1 B ′
1
. . .D2

Br B ′
r

: E•[w] −→ E• A1...Ap B1 B ′
1...Br B ′

r
[w].

We need some broad facts about the structure of the tractor formulas for Iϕ and D̃. When working in
a metric scale and using (12), (10), (15), and (17) it follows that terms of these are built, respectively,
from tensor fields and tensor valued differential operators contracted into “projectors”

ω ∈ B.

Here, B is a set of fields taking values in the appropriate tractor bundle tensor product with an
irreducible weighted trace-free tensor bundle. Each element ω ∈ B is an appropriate projection
(onto the irreducible part with respect to the tensor indices) of a p-fold tensor product of elements
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032301-16 A. R. Gover and J. Šilhan J. Math. Phys. 53, 032301 (2012)

from {X,Y ,Z,W } with a 2r-fold tensor product of elements from {X, Y, Z}, and we may take B
to be all such. Similarly, the elements of B can be considered as “injectors,” i.e., a mapping going
in the opposite direction. For example, since Iϕ is obtained from ϕ by a splitting operator, it has the
form

I
A1...Ap B1 B ′

1...Br B ′
r

ϕ =
∑
ω∈B

ωA1...Ap B1 B ′
1...Br B ′

r · Fω(ϕ) (28)

where, for each ω ∈ B, Fω(ϕ) is the result of a (weighted tensor valued) differential operator Fω

acting on ϕ (a section of (�pT M) ⊗ E[2r ]) and “ · ” indicates a contraction of tensor indices (which
are suppressed); cf. (43) below which shows Iϕ for ϕa ∈ Ea explicitly. Note also that we sum over
all strings in B in the previous display, so many of the Fω will be zero. Similarly, it follows from the
definition of D̃ that

D̃A1...Ap B1 B ′
1...Br B ′

r
=

∑
ω∈B

ωA1...Ap B1 B ′
1...Br B ′

r
· Gω, (29)

where Gω is a (weighted tensor valued) differential operator acting on densities and, again, “ · ”
denotes contraction of (suppressed) tensor indices. See (17) and (39) for explicit examples. Con-
tracting the last two displays, we obtain the canonical symmetry Sϕ as in (24). Thus, using (11) and
the surrounding observations, we have

Sϕ =
∑

ω,ω′ ∈ B,

h(ω) + h(ω′) = 0

(Fω(ϕ)) · Gω′ ,

where “ · ” indicates the contraction of suppressed tensor indices. Note pairs (ω, ω′) not satisfying
h(ω) + h(ω′) = 0 have dropped out of the sum by properties of the tractor metric. (Also note that
the same property implies that if the tensor indices of Fω and Gω′ are not compatible for complete
contraction, then the term (Fω(ϕ)) · Gω′ is necessarily zero.)

The differential order of Fω (and similarly Gω′) is exactly the maximal number of ∇’s in the
corresponding expression in the splitting operator. (We consider formulas for splitting operators
obtained using the curved Casimir C = h ABD2

AB here.) Denoting the differential order of Fω and
Gω′ (in (28) and (29)) by, respectively, o(Fω) and o(Gω′ ), we have

h(ω) + o(Fω) = p + 2r and h(ω′) + o(Gω′ ) = 0, ω, ω′ ∈ B.

Here, the first equality follows from (23) and the properties of splitting operators. The second follows
from the definition of D̃ (in particular, from the tractor expressions for D and D2 in (17), (10), and
(15). Summing up the equalities in the previous display we see that

Sϕ =
∑

ω,ω′ ∈ B,

o(Fω) + o(Gω′ ) = p + 2r

(Fω(ϕ)) · Gω′ . (30)

Note that all tractor indices have been eliminated, the formula (30) for Sϕ is expressed using
tensor operators and contractions only. Now consider a summand (Fω(ϕ)) · Gω′ of Sϕ as in (30).
First, o(Fω) + o(Gω′) = p + 2r implies o(Gω′) ≤ p + 2r ; moreover, the equality can happen only
if Fω = id (up to a nonzero scalar multiple), since (23) is a differential splitting operator. For the
same reason, this term does occur. In the previous display the term with Fω = id clearly recovers
the highest order term, i.e., the leading term. Therefore (i) follows.

Now by assumption Fω(ϕ) is irreducible. Since Sϕ : E[w] → E[w], it follows from (25) that in
the standard expression (Fω(ϕ)) · Gω′ = γ a1...ap̄ ∇a1 . . . ∇ap̄ �

r̄ , p̄, r̄ ≥ 0, where γ is symmetric and
trace-free. In fact, it follows from the form of Iϕ and D̃ that Fω(ϕ) = γ a1...ap̄ and Gω′ = ∇a1 . . . ∇ap̄ �

r̄ .

We denote the type of Fω(ϕ) by
[ p̄

r̄

]
. From this we get o(Gω′ ) = p̄ + 2r̄ and, since Fω takes ϕ of the

type
[p

r

]
to a section of the type

[ p̄
r̄

]
, we get o(Fω) ≥ |p − p̄|. (The point is that each application of
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the Levi-Civita connection may increase or decrease the rank by 1, and this is the only way the rank
may change.) These properties hold for every (irreducible) term (Fω(ϕ)) · Gω′ in (30). Therefore,

p + 2r = o(Fω) + o(Gω′ ) ≥ |p − p̄| + p̄ + 2r̄

using (30). We prove (ii), (iii), and (iv) separately in cases p ≥ p̄ and p ≤ p̄. If p ≥ p̄, then the
previous display says p + 2r ≥ p + 2r̄ hence r ≥ r̄ . This implies p + r ≥ p̄ + r̄ and p + 2r ≥
p̄ + 2r̄ . If p ≤ p̄, then the previous display means 2p + 2r ≥ 2 p̄ + 2r̄ hence p + r ≥ p̄ + r̄ . The
latter inequality with p ≤ p̄ yields r ≥ r̄ and so p + 2r ≥ p̄ + 2r̄ . This show (iv) and the inequalities
in (ii) and (iii). Now when equality holds in (iii) then p + 2r = p̄ + 2r̄ . But then p = p̄ from the
previous display thus also r = r̄ . This means o(Gω′ ) = p + 2r and o(Fω) = 0. Hence Fω = id, up
to a multiple, and so if the term is nontrivial we recover the leading term. It remains to discuss
the greatest term of Sϕ . But since we have already proved the inequality in (ii), according to the
ordering of (26) we need to consider the order of terms of level p + r. The maximal order is then
characterised by (iii). �

Note the part (iii) of the previous proposition means that the canonical symmetry (Sϕ, S′
ϕ),

ϕ
p
r ∈ (⊗pT M) ⊗ E[2r ] is nontrivial for Pk, k > r. (The statement (iii) is actually stronger: no term

in Sϕ has �k, k > r as the right factor.)
Our strategy for classifying the leading terms of symmetries uses the ordering (26). We shall

start with the greatest term and study what the symmetry condition imposes on its coefficient. We
obtain the following.

Claim: Let ϕ
j
i ∈ E ( j)0

i is the greatest coefficient of a symmetry T. Then [∇2i+1ϕ
j
i ]� = 0.

The claim forms the basis for an inductive procedure, as if [∇2i+1ϕ
j
i ]� = 0, then the greatest

term of T − S
ϕ

j
i

is strictly smaller (with respect to �) than ϕ
j
i , and using Proposition 6.1, we can

replace T by T − Sϕ
p
0

and apply the previous claim again.
The claim is proved as Proposition 6.3, and then the detailed inductive procedure is in the

proof of Theorem 6.4. The proof of Proposition 6.3 requires a detailed analysis of certain terms. To
demonstrate the technique, let us discuss an example first. Assume that (T, T′) is a symmetry of P4

= �4 of order p, i.e.,

�4T = T ′�4, T =
∑

2i+ j≤p,i<4

ϕ
j
i (� j∇)�i ,

where we have displayed the standard expression of T. Note we have not included terms with i ≥ 4
as they may be eliminated by the addition of trivial symmetries of �4. It is useful to write the terms
of T in a table as follows:

order p : ϕ
p
0 (�p∇) + ϕ

p−2
1 (�p−2∇)�1 + ϕ

p−4
2 (�p−4∇)�2 + ϕ

p−6
3 (�p−6∇)�3 +

order p − 1 : ϕ
p−1
0 (�p−1∇) + ϕ

p−3
1 (�p−3∇)�1 + ϕ

p−5
2 (�p−5∇)�2 + ϕ

p−7
3 (�p−7∇)�3 +

order p − 2 : ϕ
p−2
0 (�p−2∇) + ϕ

p−4
1 (�p−4∇)�1 + ϕ

p−6
2 (�p−6∇)�2 + ϕ

p−8
3 (�p−8∇)�3 +

order p − 3 : ϕ
p−3
0 (�p−3∇) + ϕ

p−5
1 (�p−5∇)�1 + ϕ

p−7
2 (�p−7∇)�2 + ϕ

p−9
3 (�p−9∇)�3 +

order p − 4 : ϕ
p−4
0 (�p−4∇) + ϕ

p−6
1 (�p−6∇)�1 + ϕ

p−8
2 (�p−8∇)�2 + ϕ

p−10
3 (�p−10∇)�3 +

...
... + ... + ... + ... +

Every line shows terms of the same formal order and moreover every antidiagonal shows terms of
the same level. So the ordering (26) in this case means

ϕ
p
0 � ϕ

p−2
1 � ϕ

p−1
0 � ϕ

p−4
2 � ϕ

p−3
1 � ϕ

p−2
0 � ϕ

p−6
3 � · · · .

Observe the level �(R) of an operator R is increased by k under composition with �k,

�(�k R) = �(R) + k.

Moreover, only terms of the highest level in R can contribute to terms of the highest level in �kR.
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The greatest coefficient (with respect to �) is ϕ
p
0 . Recall o(T) = p so we can assume �(T)

= p which means �(�4T) = p + 4. Now we consider terms of the level p + 4 of �4T. First, we
commute all covariant derivatives ∇ to the right. In fact, it is sufficient for our purpose to consider
only certain terms. First, we restrict to terms of the level p + 4 without a right factor �4 and then
take the candidate for the greatest among these. This is (∇1ϕ

p
0 )(�p+1∇)�3. Since this does not have

a right factor �4, it has to vanish since T is a symmetry. Hence (∇1ϕ
p
0 )� = 0, which means that ϕ

p
0

is a conformal Killing tensor. Now we replace the symmetry T by T − Sϕ
p
0
; this is also a symmetry.

The greatest coefficient of T − Sϕ
p
0

is now strictly smaller (with respect to �) than the greatest
coefficient of T. (Here we have adjusted Sϕ

p
0

so the leading term is precisely ϕ
p
0 (�p∇) rather than

some nonzero multiple. We will not comment further when this sort of maneuver is used below.) It
is ϕ

p−2
1 according to (26). So now we may rename T − Sϕ

p
0

as T and continue with the argument.

The next step is to assume ϕ
p
0 = 0 and study differential conditions imposed on ϕ

p−2
1 . Here,

we skip this and several other steps and we assume the greatest coefficient of T is ϕ
p−6
3 . So suppose

that ϕ
j
i = 0 for �(ϕ j

i ) > p − 3 = �(ϕ p−6
3 ). Then �(T) = p − 3 and so �(�4T) = p + 1. We shall

examine those terms of the operator �4T of the (highest) level p + 1 and such that they are without
a right factor �4. To find these it is sufficient to consider

�4
[
ϕ

p−6
3 (�p−6∇)�3 + ϕ

p−5
2 (�p−5∇)�2 + ϕ

p−4
1 (�p−4∇)�1 + ϕ

p−3
0 (�p−3∇)

]
.

We use the Leibniz rule to move �4 to the right in the previous display. We need to know the form

of (level p + 1) terms of types
[p−2

3

]
,
[p−1

2

]
,
[p

1

]
, and

[p+1
0

]
. The simplest case is the type

[p+1
0

]
, we

obtain only the term 24(∇4ϕ
p−3
0 ) �p+1 ∇. The operator �p + 1∇ does not arise in any other way, so

the given term must vanish through ϕ
p−3
0 satisfying the obvious equation. In the case of the type

[p
1

]
,

we similarly get the equation

24(∇4ϕ
p−4
1 )(�p∇)� + 23 · 4(∇3ϕ

p−3
0 )(�p∇)� = 0.

Here, 23 · 4 = 23
(4

1

) = 23
(4

3

)
; generally we put Cs(4) = 2s

(4
s

)
. The types

[p−2
3

]
and

[p−1
2

]
yield two

more equations which give conditions for the coefficients ϕ
p−3
0 , ϕ

p−4
1 , ϕ

p−5
2 , and ϕ

p−6
3 . Together

these four equations yield the following differential equations for the coefficients ϕ
j
i :

type
[p−2

3

]
: C4(4)∇4ϕ

p−6
3 + C3(4)∇3ϕ

p−5
2 + C2(4)∇2ϕ

p−4
1 + C1(4)∇1ϕ

p−3
0 = 0

type
[p−1

2

]
: 0 + C4(4)∇4ϕ

p−5
2 + C3(4)∇3ϕ

p−4
1 + C2(4)∇2ϕ

p−3
0 = 0

type
[p

1

]
: 0 + 0 + C4(4)∇4ϕ

p−4
1 + C3(4)∇3ϕ

p−3
0 = 0

type
[p+1

0

]
: 0 + 0 + 0 + C4(4)∇4ϕ

p−3
0 = 0

Here, we implicitly consider the symmetric trace-free parts in every equation. Now applying ∇3 to
the first equation, ∇2 to the second, and ∇ to the third, and then taking the trace-free symmetric
part in all cases, we obtain a linear system in variables [∇7ϕ

p−6
3 ]�, [∇6ϕ

p−5
2 ]�, [∇5ϕ

p−4
1 ]�, and

[∇4ϕ
p−3
0 ]�. The matrix of (integer) coefficient is⎛

⎜⎜⎜⎜⎝
C4(4) C3(4) C2(4) C1(4)

0 C4(4) C3(4) C2(4)

0 0 C4(4) C3(4)

0 0 0 C4(4)

⎞
⎟⎟⎟⎟⎠ .
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This is non-singular. So all the variables must vanish, and in particular [∇7ϕ
p−6
3 ]� = 0, which is

what we wanted to prove.
This was the case with greatest coefficient ϕ

p−6
3 . It suggests a route to solving the remaining

cases, as they yield linear systems in the same way. Actually, it turns out that in each of the cases
with the greatest terms between ϕ

p
0 and ϕ

p−6
3 (which were skipped above), the matrix of coefficients

includes a square “upper right” submatrix of the matrix above, i.e., a matrix obtained by removing
the first q columns and the last q rows for some choice of q, that is sufficient if non-degenerate. That
is it suffices to prove that determinants of these matrices are nonzero. This necessitates analysing
the combinatorial coefficients Cs(4) in more detail.

The general case is analogous; in the case of �k, k ∈ N we shall need the scalars

Cs(k) := 2s

(
k

s

)
, Cs(k) := 0 for s > k

and matrices

C(k; d) ∈ Matk−d , 0 ≤ d ≤ k − 1, where (31)

C(k; d)s,t = Ck−d+s−t (k), 1 ≤ s, t ≤ k − d.

The matrices C(k, 0) are upper diagonal with Ck(k) on the diagonal; the matrix C(4, 0) appeared in
the previous example. In fact, C(k, d) is obtained from C(k, 0) by removing d first columns and d
last rows. Note also that considering (any) diagonal of C(k, d), all the coefficients are the same.

Clearly, the C(k, 0) are regular.

Theorem 6.2: The matrices C(k, d), k ∈ N, 0 ≤ d ≤ k − 1 are regular.

The following proof of this theorem is due to J. Kadourek, of Masaryk University.

Proof: First observe that for d = 0, the matrix C is upper triangular with nonzero entries on the
diagonal. Thus, it is regular so it is sufficient to assume 1 ≤ d ≤ k − 1. Also to simplify the notation
we put kd := k − d. Clearly 1 ≤ kd ≤ k − 1.

It turns out to be useful to consider also the closely related matrix

C̃(k; d) ∈ Matkd , 0 ≤ d ≤ k − 1, where

C̃(k; d)s,t =
(

k

kd + s − t

)
, 1 ≤ s, t ≤ kd , (32)

where the latter is taken to be 0 if s − t > d. That is, the entries of C and C̃ differ by a power of 2.
Now writing the determinant as a sum (over permutations of {1, . . . , kd})) of products of entries of
a matrix, one easily shows that determinants of C and C̃ differ by a power of 2. That is, the matrix
C is regular if and only if C̃ is regular. We shall prove regularity for the latter.

First recall the well-known relation(
q

m

)
+

(
q

m + 1

)
=

(
q + 1

m + 1

)
, q, m ≥ 0. (33)

Henceforth we fix the values k, d from the allowed range. The proof now consists of several series of
row or column elementary operations which change the determinant by a nonzero multiple. During
certain stages of this process we shall obtain matrices D1, D2, D3, D4 ∈ Matkd whose determinants
differ from each other only by nonzero multiples. The last of these, D4 is upper triangular with
nonzero entries on the diagonal, and so this concludes the proof.

The construction of D1 from C̃ consists of kd − 1 steps; in each of these we undertake a series
of elementary column operations, as follows. In the first step, we add the second column to the first
one, then the third column to the second and so on; finally, we add the last column to the last but one.
In the second step, we add the second column to the first one, then the third column to the second
and so on but finish by adding the (kd − 1)th column to the (kd − 2)th column. Continuing in this
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way, in the last step (i.e., the step number kd − 1) we add only the second column to the first one.
Note the determinants of D1 and C̃ differ by a nonzero multiple.

Overall we obtain the matrix

D1(s, t) =
(

k + kd − t

kd + s − t

)
= (k + kd − t)!

(kd + s − t)!(k − s)!
; (34)

note 1 ≤ kd + s − t ≤ k + kd − t. The reasoning uses (33) in every addition of two binomial
numbers and goes as follows. Consider how the (s, t)-entry changes during the procedure described
in the previous paragraph. First observe that after the ith step of elementary column operations, this
entry has the form

( ai

kd+s−t

)
. That is, the “denominator” of the binomial number on the position (s,

t) does not change during this procedure. This follows from (33). Second, the “numerator” of the
binomial number on the (s, t)-position increases by 1 if we add the (s, t + 1)–entry, see (33). Thus
the “numerator” depends on the number of additions of the (t + 1)st column, as stated in (34).

Now we modify the matrix D1 as follows. First, we multiple the tth column by 1
(k+kd−t)! , where

we note that k + kd − t ≥ k ≥ 1. Then, we multiply the sth row by (k − s)! where k − s ≥ 1
because s ≤ kd ≤ k − 1. We obtain the matrix D2, the determinants of D1 and D2 differ by a nonzero
multiple. It follows from the fractional form of entries of D1 in (35) that

D2(s, t) = 1

(kd + s − t)!
. (35)

We continue with the following modification of D2. First, we multiply the sth row by (kd + s
− 1)! ≥ 1. Then, we multiply the tth column by 1

(t−1)! , t − 1 ≥ 0 (thus (t − 1)! ≥ 1). The result is
a matrix D3, the determinants of D3 and D2 differ by nonzero multiple. It follows from (35) that

D3(s, t) = (kd + s − 1)!

(kd + s − t)!(k − 1)!
=

(
kd + s − 1

kd + s − t

)
. (36)

In the last stage we apply the following kd − 1 steps of elementary row transformations to the
matrix D3. Observe that the first column of D3 has all its entries equal to 1. In the first step, we
subtract the (kd − 1)-st row from the kd-th row, then we subtract (kd − 2)-nd row from the (kd

− 1)-st row and so on; finally, we subtract the first row from the second one. Thus, the first column
has now 1 as its top entry and 0’s below this. In the second step, we subtract the (kd − 1)-st row
from the kd-th row, then we subtract (kd − 2)-nd row from the (kd − 1)-st row and so on, as before
except in this step we finish at the point of subtracting the 2nd row from the 3rd row. Continuing in
this way, in the last step we subtract only (kd − 1)-st row from the kd-th row. We shall denote the
resulting matrix by D4.

It turns out D4 is upper triangular with all entries on the diagonal equal to 1. To show this note
we use (33) at every step of the above procedure. In fact, the final form of D4 can be foreseen already
from the first step, after which we obtain a matrix that we shall denote O ∈ Matkd . We already know
the first column of O is (1, 0, . . . , 0)T. From this it follows that in the second step we effectively
work only with submatrix of O with entries (s, t), 2 ≤ s, t ≤ kd. Since

O(s, t) =
(

kd + s − 2

kd + s − t

)
= D3(s − 1, t − 1), 2 ≤ s, t ≤ kd

using (33), we see this submatrix of O is exactly the submatrix of D3 without the last row and the
last column. Applying the second step to the displayed submatrix corresponds to applying the first
step to the corresponding submatrix of D3 (the last row and column clearly have no influence on the
previous ones). These observations yield an inductive procedure which demonstrates the claimed
form of D4. �

Proposition 6.3: Let (T, T′) be a normal symmetry of �k and suppose that, in a standard expres-
sion for T, ϕ

p
r (�p∇)�r is the greatest nonzero term of T with respect to �. Then [∇2r+1ϕ

p
r ]|� = 0.
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Proof: The ordering � can be equivalently described as ϕ
j
i � ϕ

j ′
i ′ if and only if either i + j < i′

+ j′ or i + j = i′ + j′ and i < i′. Thus

�k T = T ′�k, T = ϕ p
r (�p∇)�r +

∑
i<k

i+ j<r+p or
(i+ j=r+p)∧(i<r )

ϕ
j
i (� j∇)�i .

Note ϕ
p
r might not be a leading term of T.

Note, �(T) = p + r and �(�kT) = p + r + k. We shall discuss the terms of the highest level
in �kT. For this it is sufficient to apply �k only to level p + r terms of T. That is, we need to
understand the right-hand side of

�k
[
ϕ p

r (�p∇)�r + ϕ
p+1
r−1 (�p+1∇)�r−1 + . . . + ϕ

p+r
0 (�p+r∇)

]
− F�k

= ψ
p+r+1
k−1 (�p+r+1∇)�k−1 + ψ

p+r+2
k−2 (�p+r+2∇)�k−2 + . . . + ψ

p+r+k
0 (�p+r+k∇) + llt,

where F is a differential operator. Here “llt” denotes terms of the level at most p + r + k − 1 (with

powers of � strictly less than k) and ψ
j

i is of type
[ j
i

]
. Since i < k for every ψ

j
i on the right-hand

side, imposing the symmetry condition, each of these terms has to vanish. This yields k differential
conditions

ψ
p+r+1
k−1 (�p+r+1∇)�k−1 = 0, ψ

p+r+2
k−2 (�p+r+2∇)�k−2 = 0, . . . , ψ

p+r+k
0 (�p+r+k∇) = 0.

Thus ψ
p+r+q+1
k−q−1 = 0 for q ∈ {0, . . . , k − 1}. For our purposes it turns out to be sufficient to take q

in the (in general smaller) range {0, . . . , r}. So we have r + 1 differential conditions. Now fix such
a q; we have more explicitly

ψ
p+r+q+1
k−q−1 = [

aq,0∇r+q+1ϕ p
r + aq,1∇r+qϕ

p+1
r−1 + . . . + aq,r∇q+1ϕ

p+r
0

]|�
for some integer coefficients aq,q ′ , q′ ∈ {0, . . . , r}. Via the Leibniz rule and a counting argument, it is
straightforward to verify that aq,q ′ = Cr+q−q ′+1(k). Recall ψ

p+r+q+1
k−q−1 = 0 hence the right-hand side

of the previous display vanishes. Finally, let us apply ∇r − q to both sides of the previous display.
Projecting to the Cartan component, we obtain[

Cr+q+1(k)(∇2r+1ϕ p
r ) + Cr+q (k)(∇2rϕ

p+1
r−1 ) + . . . + Cq+1(k)(∇r+1ϕ

p+r
0 )

]|� = 0.

This is a linear equation in the r + 1 variables (∇2r+1ϕ
p
r )|�, (∇2rϕ

p+1
r−1 )|�, . . . , (∇r+1ϕ

p+r
0 )|�.

These variables obviously do not depend on q. That is for every q ∈ {0, . . . , r} we obtain one
equation in these variables. Overall we have a system of r + 1 linear equations in r + 1 variables
(∇2r+1ϕ

p
r )|�, (∇2rϕ

p+1
r−1 )|�, . . . , (∇r+1ϕ

p+r
0 )|�. The integer coefficients are aq,q ′ = Cr+q−q ′+1(k)

= C (r+1)+(q+1)−(q ′+1)(k), q, q′ ∈ {0, . . . , r} thus the (r + 1) × (r + 1) matrix of integer coefficients
is exactly C(k, d) for d = k − r − 1 from (31). (Note r < k hence d ∈ {0, . . . , k − 1}.) But
matrices C(k, d) are regular according to Theorem 6.2. Therefore, this linear system has only the
zero solution, i.e.,

(∇2r+1ϕ p
r = 0)|� = 0,∇2r (ϕ p+1

r−1 )|� = 0, . . . , (∇r+1ϕ
p+r
0 )|� = 0.

In particular (∇2r+1ϕ
p
r )|� = 0, which is what we wanted to prove. �

Finally, we have the key theorem of this section. By an obvious induction this establishes the
second part of Theorem 2.1.

Theorem 6.4: Let (S, S′) be a normal symmetry of �k and suppose that, in a standard expression
for S, ϕ p

r (�p∇)�r , r < k is a leading term. Then [∇2r+1ϕ
p
r ]|� = 0. This establishes the second part

of Theorem 2.1. Note that using the conformal metric, we can view all p + 2r + 1 abstract indices
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of ∇2r+1ϕ
p
r as contravariant. Then the projection to the Cartan component in [∇2r+1ϕ

p
r ]|� = 0

simply means taking the symmetric trace-free part.

Proof: Consider the coefficients of the maximal level �(S) of S; among them, denote by ψ
j

i the
term of the highest order. In the other words, ψ

j
i is the greatest coefficient in S with respect to �.

Now [∇2i+1ψ
j

i ]|� = 0 according to Proposition 6.3 hence ψ
j

i yields the corresponding canonical
symmetry (Sψ, S′

ψ ) of �k. Therefore, (S − Sψ, S′ − S′
ψ ) is also a symmetry of �k.

First observe using Proposition 6.1 (iii) that the leading terms of S and S − Sψ can differ only
if ψ

j
i (� j∇)�i is a leading term of S. But in that case we have proved the theorem for ψ

j
i (� j∇)�i .

Therefore, it is sufficient to prove the theorem for S − Sψ . So we can take S := S − Sψ and continue
inductively.

Proposition 6.1: (ii) guarantees that the greatest term of S := S − Sψ is smaller than the greatest
term of S. Hence this induction with respect to � is finite. �

VII. ALGEBRA OF SYMMETRIES

Here, we shall prove Theorem 2.5. Recall that the finite-dimensional space of solutions of (3)
may be realised as a standard linear “matrix” representation of g = sos+1,s ′+1 via the map from
solutions to parallel tractors ϕ �→ Iϕ . In the case of conformal Killing vectors (i.e., (3) with p = 1, r
= 0) the range space is g, on which g acts by the adjoint representation. Then the identification of
g with differential symmetries is given by the mapping g � Iϕ �→ Sϕ = I A

ϕ DA, as a special case of
(24). The mapping Sϕ = I A

ϕ DA extends to

g ⊗ g ⊗ · · · g � Iϕ1 ⊗ · · · ⊗ Iϕm �→ Sϕ1 · · · Sϕm , m ≥ 1, (37)

and hence to the full tensor algebra
⊗

g by linearity.
The first step in the proof of Theorem 2.5 is to express the composition Sϕ Sϕ̄ for Iϕ, Iϕ̄ ∈ g in

terms of canonical symmetries. This is done , Theorem 5.1 of Ref. 21] and necessarily our results
must agree with those from their construction (as uniqueness of the low order symmetries involved
is easily verified). We present the details here to keep this text self-contained and also because we
derive the formulas for all conformally flat manifolds.

Putting I := Iϕ, Ī := Iϕ̄ to simplify the notation, one has

Sϕ Sϕ̄ = I ADA Ī BDB = I A Ī BDADB, (38)

on E[w], since I is parallel. This gives an explicit and key link between the algebraic structure of
symmetries Ak and operations on the tensor algebra

⊗
g. We shall consider the displayed operator

acting on E[w] for all w ∈ R at this stage.
We need to decompose DADB into irreducible components. Using the definition of DA, a direct

computation shows that

DADB f = 4w2WAWB f − 4wX a
AY

b
B gab f

+ 4(w − 1)X a
AWB∇a f + 4wWAX

b
B∇b f + 4X a

AZ
b
Bgab0∇b1 f (39)

+ 4X a
AX

b
B(∇a∇b + wPab) f.

From this, one easily verifies that

1

2
(DADB + DBDA) = 1

2
(DADB + DBDA)|� + 4

n
h A0 B0D2

(A1 B1)0

+ 2

(n + 1)(n + 2)
h A0 B0 h A1 B1DADA, (40)

1

2
(DADB − DBDA) = 3h A0[A1DB] = −2h A0 B0DA1 B1 .
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Hence, we need the irreducible components
0
, 0,

and R of I A Ī B, cf. (6). Explicitly,
we put

I, Ī := −4nIAĪA ∈ R,

[I, Ī]A := 4IA
0P Īp

A1 ∈ ,

(I • Ī)BB :=
4

n
IP (B ĪP

B )0 ∈ 0

(41)

and we denote by (I � Ī )AB the trace-free part of the Young projection applied to I A Ī B.
Using this notation, the projection and decomposition of I A ⊗ Ī B into its irreducible components in

, R, and 0
is given by

⊗ IA ⊗ ĪB (I Ī)AB − 1

2n(n+ 1)(n+ 2)
hA0B0

hA1B1

I, Ī

+
1

n
hA0B0

[I, Ī]A
1B1

+ hA0B0

(I • Ī)A1B1

.

(42)

Using the computation above, we easily recover, Theorem 5.1 of Ref. 21].

Theorem 7.1: Let ϕa, ϕ̄a ∈ Ea be conformal Killing fields corresponding to I A := I A
ϕ and

Ī A := I A
ϕ̄ in g = sos+1,s ′+1. Then

Sϕ Sϕ̄ f = (I � Ī )ABDADB f + (I • Ī )B B ′
D2

B B ′ f + 1

2
[I, Ī ]ADA f + w(n + w)

n(n + 1)(n + 2)
〈I, Ī 〉 f

for f ∈ E[w], cf. (7). The four summands on the right-hand side are canonical symmetries, explicitly� (I � Ī )ABDADB = S� for E (ab)0 � �ab = ϕ(aϕ̄b)0 ,� (I • Ī )B B ′
D2

B B ′ = S� for E[2] � � = 1
n ϕaϕ̄a ,� [I, Ī ]ADA = S� for Ea � �a = ϕb∇bϕ̄

a − ϕ̄b∇bϕ
a (the Lie bracket of vector fields),� R � 〈I, Ī 〉 = −4nI A ĪA = −2[ϕa∇a∇bϕ̄

b + ϕ̄a∇a∇bϕ
b] + n(∇aϕ

b)(∇bϕ̄
a) −

n−2
n (∇aϕ

a)(∇bϕ̄
b) − 4n Pabϕ

aϕ̄b.

In all these cases, the section � is a solution of the corresponding equation (3).

Proof: The statement puts together the previous computations. Following (38), we need to
decompose I A Ī BDADB into canonical symmetries. This is provided by contracting right-hand sides
of (42) and (40). Using in addition DADA f = −2w(n + w) f for f ∈ E[w] (which easily follows
from (39)), the right-hand side of Sϕ Sϕ̄ in the display above follows.

The components I � Ī , I • Ī , [I, Ī ], and 〈I, Ī 〉 are parallel (and irreducible) thus their projecting
parts � are solutions of the corresponding equation from the family (3). To prove the theorem, it
remains to identify howthese solutions are built from ϕa, ϕ̄a ∈ Ea . Note

I A = YA
a ϕa + 1

2
ZA

a∇a0
ϕa1 + 1

n
W A∇aϕ

a + XA
a[

1

n
∇a∇bϕ

b + Pabϕ
b] (43)

and similarly for Ī A.31 Now the explicit form of such � for irreducible components of I A ⊗ Ī B is
easily obtained from (41) for I • Ī , [I, Ī ], and 〈I, Ī 〉. Since 1

2 (I A Ī B + I B Ī A) has the projecting part
ϕ(aϕ̄b), the case I � Ī follows by irreducibility. �

To finish the proof of Theorem 2.5, observe the following. First, we have an associative algebra
morphism ⊗

g → Ak
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determined by (37). That this is surjective and an easy consequence of Theorem 2.4 since the
canonical symmetries Sφ of (24) clearly arise in the range of (37). We want to find all corresponding
relations, that is identify the two-sided ideal annihilated by this map. The ideal certainly contains (8),
as follows from Theorem 7.1 with w = − n

2 + k. That it also contains �2k� is due to the following
result.

Lemma 7.2: Assume I ∈ �2ksquare is parallel. Then I = Iϕ for ϕ ∈ E[2k] and Sϕ = ϕPk :
E[− n

2 + k] → E[− n
2 + k].

Proof: I ∈ �2ksquare means I A1 A′
1···Ak A′

k ∈ E (A1 A′
1···Ak A′

k )0 and I = Iϕ for ϕ ∈ E[2k] is due to the
irreducibility of I and the fact that is parallel. Then

Sϕ = I
A1 A′

1···Ak A′
k

ϕ D2
A1 A′

1
· · ·D2

Ak A′
k
.

Now observe D2
(C D)0

= −X (C DD)0 and X (C DD)0 = D(C X D)0 , cf. (18). On the other
hand D(A1 · · · DAk )0 = (−1)k X (A1 · · · X Ak )0 Pk on E[− n

2 + k].27, 30 Thus D2
A1 A′

1
· · ·D2

Ak A′
k= X A1

X A′
1
· · · X Ak

X A′
k
Pk on E[− n

2 + k]. The rest follows from the relation between ϕ and Iϕ
in (23). �

We have found the generators of the ideal in
⊗

g described in Theorem 2.5; it remains to show
that this ideal large enough to have Ak as the resulting quotient. Essentially, we follow Refs. 20 and
21, where cases k = 1 and k = 2 are studied. We assume k ≥ 1 here. Since we know Ak , as a vector
space, from (4), it is sufficient to consider the corresponding graded algebra (i.e., the symbol algebra
of Ak .) The corresponding graded ideal contains I1 ⊗ I2 − I1 � I2 − I1 • I2 for I1, I2 ∈ g, cf. (8),
hence it contains g ∧ g. Therefore, we can pass to

⊙
g and we write I for the ideal in

⊙
g which is

the image of the ideal of Theorem 2.5. We claim that as a graded structure Ak = ⊕Ak,t , where the
Ak,t are defined as the submodules satisfying

Ak,t = X ∈

t

· · ·
· · · s.t. trace(. . . (trace

k

(X)..)) = 0 ⊆ tg.

The traces are taken via the tractor metric and note that the trace condition arises from Lemma 7.2
above. As a vector space this is the right answer as, by standard representation theory, Ak,t

= ⊕
j+2i=t K

j
i , t ≥ 1. To finish the proof, we need to show

⊙t g = Ak,t ⊕ It (as vector spaces)

where It = I ∩ ⊙t g, t ≥ 1. This is based on the following.

Lemma 7.3: Assume t ≥ 3, k ≥ 1. Then

⊗Ak,t−1 ∩ Ak,t−1 ⊗ =
Ak,t t = 2k

Ak,t ⊕ 2k t = 2k.

Proof: The case t < 2k follows from, Theorem 2 of Ref. 19 or can be easily checked directly.
Assume t > 2k. The inclusion “⊇” is obvious. To show “⊆” consider the tensor FA1...At in the
left-hand side of the display. Then

FA1...Ai...Aj...At = FA1...Aj...Ai...At

for any 1 ≤ i < j ≤ t. From this it easily follows that the skew symmetrisation over any three indices
of F is zero. (This and the last display also follow from, Theorem 2 of Ref. 19.) Now any composition
of k traces applied to F affects 2k indices among 2t indices A0

1, A1
1, . . . , A0

t , A1
t , i.e., at most 2k form

indices among A1, . . . , At . Thus, there is a free form index Ai (as t > 2k) and the inclusion “⊆”
follows from the symmetry given by the previous display.
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Assume t = 2k. Following the previous case “⊆,” the difference appears only if a composition
of k traces affects all 2k form indices of F. After taking of such composition of traces we obtain a
tensor in

⊙t � and one easily sees this tensor is trace-free. On the other hand, for any symmetric
trace-free tensor G A0

1...A
0
2k ∈ �2k�, one has

GA0
1...A

0
2khA1

1···A1
2k ∈ ⊗Ak,t−1 ∩ Ak,t−1 ⊗ (44)

which can be easily verified by direct computation. Here, h A1
1···A1

2k = h(A1
1 A1

2 · · · h A1
2k−1 A1

2k ) and recall
we implicitly skew over the couples A0

i A1
i for 1 ≤ i ≤ 2k. �

The final step is to use that for each s, there is (by standard theory) a projection �sg → Ak,s

and that the induced projections Pt :
⊙t g → g ⊗ Ak,t−1 and Qt :

⊙t g → Ak,t−1 ⊗ g have kernel
in, respectively, g ⊗ It−1 and It−1 ⊗ g (and hence in both cases in It ) where for each non-negative
integer s, Is = I ∩ ⊙s g. Therefore, by obvious dimensional considerations,

t = (imPt ∩ imQt)⊕ (kerPt + kerQt), t ≥ 3 (45)

and the claim above and then Theorem 2.5 follow by induction.
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Abstract. Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3.
We determine the form of all the conformal symmetries of the conformal (or Yamabe)
Laplacian on (M, g), which are given by differential operators of second order. They are
constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant
condition. As a consequence, we get also the classification of the second order symmetries
of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which
hold on conformally flat and Einstein manifolds respectively. We illustrate our results on
two families of examples in dimension three.
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1 Introduction

We work over a pseudo-Riemannian manifold (M, g) of dimension n ≥ 3, with Levi-Civita
connection ∇ and scalar curvature Sc. Our main result is the classification of all the differential
operators D1 of second order such that the relation

∆YD1 = D2∆Y (1.1)

holds for some differential operator D2, where ∆Y := ∇agab∇b− n−2
4(n−1)Sc is the Yamabe Lapla-

cian. Such operators D1 are called conformal symmetries of order 2 of ∆Y . They preserve the
kernel of ∆Y , i.e. the solution space of the equation ∆Y ψ = 0, ψ ∈ C∞(M). Under a conformal
change of metric, ĝ = e2Υg, Υ ∈ C∞(M), the Yamabe Laplacian transforms as

∆̂Y = e−
n+2
2

Υ ◦∆Y ◦ e
n−2
2

Υ,

so that each conformal symmetry D1 of ∆Y gives rise to one of ∆̂Y given by

D̂1 = e−
n−2
2

Υ ◦D1 ◦ e
n−2
2

Υ.

This emphasizes the conformal nature of the problem and justify our choice of the Yamabe
Laplacian, rather than the more usual Laplace–Beltrami one, ∆ := ∇agab∇b. Over flat pseudo-
Euclidean space, the classification of conformal symmetries up to second order is due to Boyer,
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Kalnins and Miller [7], who use it to study the R-separation of variables of the Laplace equa-
tion ∆Ψ = 0. More generally, Kalnins and Miller provide an intrinsic characterization for
R-separation of this equation on (M, g) in terms of second order conformal symmetries [19].
Thus, classifying those symmetries happens to be a basic problem in the theory of separation
of variables. A new input into the quest of conformal symmetries has been given by the work
of Eastwood [15]. He classified indeed the conformal symmetries of any order over the confor-
mally flat space and exhibited their interesting algebraic structure. This leads to a number of
subsequent works, dealing with other invariant operators [16, 18, 31].

Using principal symbol maps, one can extract two informations from the equation (1.1): the
operators D1 and D2 have the same principal symbol and the latter is a conformal Killing 2-
tensor, i.e. a constant of motion of the geodesic flow, restricted to the null cone. One looks then
for a right inverse to the principal symbol maps, called a quantization map, which associates
with each conformal Killing tensor a conformal symmetry of ∆Y . For Killing vector fields this
is trivial. If K is a 2-tensor, Carter proves that if the minimal prescription

K 7→ ∇aKab∇b

satisfies [∆Y ,∇aKab∇b] = 0, then K is Killing. Moreover, he shows that if (M, g) is Einstein,
i.e. if Ric = 1

nScg with Ric the Ricci tensor, the fact that K is Killing is sufficient to ensure
that the minimal prescription above is a symmetry of ∆Y (for application to the separation
of variables, see [3]). Besides, in [15], Eastwood defines conformally invariant operators on an
arbitrary pseudo-Riemannian manifold, which coincide with the conformal symmetries of ∆Y

on the flat space. These operators are given by means of the natural and conformally invariant
quantization Qλ0,λ0 (where λ0 = n−2

2n ), developed in [9, 24, 29, 30]. Explicitly, if X is a vector
field and K a symmetric trace-less 2-tensor, Qλ0,λ0(X) and Qλ0,λ0(K) are differential operators
acting between λ0-densities defined in the following way:

Qλ0,λ0(X) = Xa∇a +
n− 2

2n
(∇aXa),

Qλ0,λ0(K) = Kab∇a∇b +
n

n+2

(
(∇aKab)∇b +

n−2

4(n+1)
(∇a∇bKab)

)
− n+2

4(n+1)
RicabK

ab.

In the conformally flat case, all the conformal symmetries of second order are of the type
Qλ0,λ0(K + X + c), where c ∈ R, X is a conformal Killing vector field and K is a conformal
Killing 2-tensor. Thanks to the conformal covariance of ∆Y one can show that Qλ0,λ0(X) is still
a conformal symmetry of ∆Y on an arbitrary pseudo-Riemannian manifold, if X is a conformal
Killing vector field. However, as pointed out by Eastwood in [15], it is unclear whetherQλ0,λ0(K)
is a conformal symmetry when K is a conformal Killing 2-tensor.

Our strategy relies on the properties of the quantization map Qλ0,λ0 and on the classification
of natural and conformally invariant operators acting on prescribed subspaces of symbols. This
method has been developed first on conformally flat manifolds, in [26]. In that case, the
map Qλ0,λ0 is a conformally equivariant quantization [12], and the author proved that it is
precisely the bijective map between conformal Killing tensors and conformal symmetries of ∆Y ,
discovered by Eastwood. The description of conformal symmetries on arbitrary pseudo-Rieman-
nian manifolds is more involved, even at order 2. Namely, there exists a conformal symmetry
with principal symbol K if and only if K is a conformal Killing tensor and Obs(K)[ is an exact
one-form. Here, Obs is a natural and conformally invariant operator which reads, in abstract
index notation, as

Obs(K)a =
2(n− 2)

3(n+ 1)
(Cr

st
a∇r − 3Ast

a)Kst,
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where C denotes the Weyl tensor and A the Cotton–York tensor. If Obs(K)[ is equal to the
exact one-form −2df , with f ∈ C∞(M), then the operators

Qλ0,λ0(K +X + c) + f

are conformal symmetries of ∆Y for all conformal Killing vector field X and constant c ∈ R. As
a consequence, Qλ0,λ0(K) is a conformal symmetry of ∆Y if and only if Obs(K) = 0.

We illustrate our results on two examples in dimension three. In the first one, the space R3

is endowed with the most general Riemannian metric admitting a Killing 2-tensor K, which
is diagonal in orthogonal coordinates [28]. Then, Obs(K)[ is a non-trivial exact 1-form and,
up to our knowledge, the symmetry of ∆Y that we obtain is new. In the second one, we
consider a conformal Stäckel metric g on R3 with one ignorable coordinate. Such a metric
admits an irreducible conformal Killing tensor K. Using the generic form of g and K given in
the reference [8], we obtain that Obs(K)[ is a non-exact 1-form in general. This means there
are no conformal symmetries of ∆Y with principal symbol K in general.

We detail now the content of the paper.
In Section 2, we introduce the basic spaces: the one of tensor densities Fλ(M) of weight

λ ∈ R, the one of differential operators Dλ,µ(M) acting between λ- and µ-densities, the one of
symbols Sδ(M) with δ = µ − λ. Then, we define the Yamabe Laplacian ∆Y as an element of
Dλ0,µ0(M), with λ0 = n−2

2n and µ0 = n+2
2n , so that it becomes a conformally invariant operator.

Finally we introduce our main tool, namely the natural and conformally invariant quantization

Qλ,µ : Sµ−λ(M) → Dλ,µ(M),

and we provide explicit formulas for it.
In Section 3, we classify the natural and conformally invariant operators between some sub-

spaces of symbols. Among the operators we obtain (and which are crucial for understanding
of 2nd order symmetries), one of them, G, is classical, whereas another one, Obs, acting on
symbols of second degree, is new and admits no counterpart on flat space. We obtain also an
analogous classification for higher order trace-free symbols where the situation is much more
complicated. Note that the discovered operators act between source and target spaces of well-
known conformally invariant operators, which appear in the generalized BGG sequence [10]. It
would be interesting to understand better the relations between all these conformal operators.

In Section 4 lies our main result. After defining the spaces of conformal symmetries and of
conformal Killing tensors, we prove that, on symbols K of degree 2, we have

(Qλ0,µ0)−1 (∆YQλ0,λ0(K)−Qµ0,µ0(K)∆Y ) = 2G(K) + Obs(K).

The kernel of G is precisely the space of conformal Killing tensors, whereas Obs(K) is the
obstruction for a conformal Killing 2-tensor to provide a conformal symmetry of the form
Qλ0,λ0(K). The full description of conformal symmetries of 2nd order of ∆Y easily follows.
Using that Qλ0,λ0(K) = Qµ0,µ0(K) for Killing 2-tensors, we deduce also the classification of
second order symmetries of ∆Y , which satisfy by definition [∆Y , D1] = 0.

In Section 5, we provide two examples illustrating our main result. In the first one, the
Killing tensor K is such that Obs(K)[ is a non-vanishing but exact one-form. In the second
example, we provide several conformal Killing tensors K such that Obs(K)[ is a non-exact
one-form. Hence, there is no conformal symmetry with such K as principal symbols.

2 Conformal geometry, differential operators,
and their symbols

Throughout this paper, we employ the abstract index notation from [27]. That is, on a smooth
manifold M , va denotes a section of the tangent bundle TM , va a section of the cotangent bundle
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T ∗M and e.g. vabc a section of TM ⊗ TM ⊗ T ∗M . The letters a, b, c, d and r, s, t are reserved
for abstract indices. Repetition of an abstract index in the covariant and contravariant position
means contraction, e.g. vabb is a section of TM . In few places we use concrete indices attached
to a coordinate system. This is always explicitly stated and we denote such indices by letters
i, j, k, l to avoid confusion with abstract indices. We always use the Einstein’s summation
convention for indices, except if stated otherwise.

2.1 Basic objects

Let M be a n-dimensional smooth manifold. If λ ∈ R, the vector bundle of λ-densities,
Fλ(M)→M , is a line bundle associated with P 1M , the linear frame bundle over M :

Fλ(M) = P 1M ×ρ R,

where the representation ρ of the group GL(n,R) on R is given by

ρ(A)e = |detA|−λe, ∀A ∈ GL(n,R), ∀ e ∈ R.

We denote by Fλ(M) the space of smooth sections of this bundle. Since Fλ(M) is associated
with P 1M , the space Fλ(M) is endowed with canonical actions of Diff(M) and Vect(M). If
(x1, . . . , xn) is a coordinate system on M , we denote by |Dx|λ the local λ-density equal to
[(Id, 1)], where Id is the identity frame in the coordinates system (x1, . . . , xn).

Actually, a λ-density ϕ at a point x ∈ M can be viewed as a map on ∧nTxM with values
in R such that

ϕ(cX1 ∧ · · · ∧Xn) = |c|λϕ(X1 ∧ · · · ∧Xn)

for all X1, . . . , Xn ∈ TxM and c ∈ R. The λ-density |Dx|λ is then the λ-density equal to one on
∂1∧· · ·∧∂n, where ∂1, . . . , ∂n denotes the canonical basis of TxM corresponding to the coordinate
system (x1, . . . , xn).

If a λ-density ϕ reads locally f |Dx|λ, where f is a local function, then the Lie derivative of
ϕ in the direction of a vector field X reads locally

LλXϕ =
(
X.f + λ

(
∂iX

i
)
f
)
|Dx|λ. (2.1)

It is possible to define the multiplication of two densities. If ϕ1 reads locally f |Dx|λ and if ϕ2

reads locally g|Dx|δ, then ϕ1ϕ2 reads locally fg|Dx|λ+δ.
On a pseudo-Riemannian manifold (M, g), it is possible to define in a natural way a λ-density.

In a coordinate system, this λ-density reads

|Volg|λ = | det g|λ2 |Dx|λ,

where | det g| denotes the absolute value of the determinant of the matrix representation of g in
the coordinate system.

We shall denote by Dλ,µ(M) the space of differential operators from Fλ(M) to Fµ(M). It
is the space of linear maps between Fλ(M) and Fµ(M) that read in trivialization charts as
differential operators. The actions of Vect(M) and Diff(M) on Dλ,µ(M) are induced by the
actions on tensor densities: if LXD denotes the Lie derivative of the differential operator D in
the direction of the vector field X, we have

LXD = LµX ◦D −D ◦ LλX , ∀D ∈ Dλ,µ(M) and ∀X ∈ Vect(M).

φ ·D = φ ◦D ◦ φ−1, ∀D ∈ Dλ,µ(M) and ∀φ ∈ Diff(M).
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The space Dλ,µ(M) is filtered by the order of differential operators. We denote by Dkλ,µ(M)
the space of differential operators of order k. It is well-known that this filtration is preserved
by the action of local diffeomorphisms.

On a pseudo-Riemannian manifold (M, g), it is easy to build an isomorphism between
Dλ,µ(M) and D(M), the space of differential operators acting between functions. Indeed, thanks
to the canonical densities built from |Volg|, all operators D ∈ Dλ,µ(M) can be pulled-back on
functions as follows

Fλ(M)
D // Fµ(M)

C∞(M)

|Volg|λ
OO

|Volg|−µ◦D◦|Volg|λ
// C∞(M)

|Volg|µ
OO

(2.2)

The space of symbols is the graded space associated with Dλ,µ(M): it is then equal to

grDλ,µ(M) :=
∞⊕

k=0

Dkλ,µ(M)/Dk−1
λ,µ (M).

The canonical projection σk : Dkλ,µ(M) → Dkλ,µ(M)/Dk−1
λ,µ (M) is called the principal symbol

map. As the actions of Diff(M) and Vect(M) preserve the filtration of Dλ,µ(M), they induce
actions of Diff(M) and Vect(M) on the space of symbols.

Let δ = µ − λ be the shift of weights. If the sum of the k-order terms of D ∈ Dkλ,µ in

a coordinate system (x1, . . . , xn) reads

Di1...ik∂i1 · · · ∂ik

and if (xi, pi) is the coordinate system on T ∗M canonically associated with (x1, . . . , xn), then
we get the following identification:

σk(D) ←→ Di1...ikpi1 · · · pik .

Thus, the space of symbols of degree k can be viewed as the space Skδ (M) := Polk(T ∗M)⊗C∞(M)

Fδ(M), where Polk(T ∗M) denotes the space of real functions on T ∗M which are polynomial
functions of degree k in the fibered coordinates of T ∗M . The algebra S(M) := Pol(T ∗M) is
clearly isomorphic to the algebra Γ(STM) of symmetric tensors and depending on the context
we will refer to its elements as symbols, functions on T ∗M or symmetric tensors on M .

Let us recall that, if S1, S2 ∈ S(M), then the Poisson bracket of S1 and S2, denoted by
{S1, S2}, is defined in a canonical coordinate system (xi, pi) of T ∗M in the following way:

{S1, S2} = (∂piS1)
(
∂xiS2

)
− (∂piS2)(∂xiS1). (2.3)

We conclude this subsection by two properties of the principal symbol map linked to the
composition and to the commutator of differential operators. For all k, l ∈ N, we have:

σk+l(A ◦B) = σk(A)σl(B), (2.4)

σk+l−1([A,B]) = {σk(A), σl(B)}, (2.5)

where A and B are elements of D(M) of order k and l respectively.
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2.2 Pseudo-Riemannian and conformal geometry

Let (M, g) be a pseudo-Riemannian manifold. The isometries Φ of (M, g) are the diffeo-
morphisms of M that preserve the metric g, i.e. Φ∗g = g. Their infinitesimal counterparts
X ∈ Vect(M) are called Killing vector fields, they satisfy LXg = 0, with LXg the Lie derivative
of g along X.

Given the Levi-Civita connection ∇ corresponding to the metric g, the Riemannian curvature
tensor, which reads as Rab

c
d in abstract index notation, is given by [∇a,∇b]vc = Rab

c
dv
d for

a tangent vector field vc. Then, one gets the Ricci tensor by taking a trace of the Riemann
tensor, which is indicated by repeated indices: Ricbd = Rab

a
d. By contraction with the metric,

the Ricci tensor leads to the scalar curvature Sc = gab Ricab.

A conformal structure on a smooth manifold M is given by the conformal class [g] of a pseudo-
Riemannian metric g, where two metrics g and ĝ are conformally related if ĝ = e2Υg, for some
function Υ ∈ C∞(M). The conformal diffeomorphisms Φ of (M, [g]) are those which preserve the
conformal structure [g], i.e. there exists Υ ∈ C∞(M) such that Φ∗g = e2Υg. Their infinitesimal
counterparts X ∈ Vect(M) are called conformal Killing vector fields, they satisfy LXg = fXg,
for some function fX ∈ C∞(M).

Let (xi, pi) be a canonical coordinate system on T ∗M . If M is endowed with a metric g, we
define the metric symbol and the trace operator by, respectively,

H = gijpipj and Tr = gij∂pi∂pj .

Note that the symbol |Volg|2/nH ∈ S2/n and the operator |Volg|−2/n Tr : Sδ → Sδ−2/n are
conformally invariant. In consequence, we get a conformally invariant decomposition

SkTM =
⊕

0≤2s≤k
Sk,sTM, (2.6)

where S ∈ Sk,s(M) := Γ(Sk,sTM) is of the form S = HsS0 with TrS0 = 0.

2.3 The conformal Laplacian

Starting from a pseudo-Riemannian manifold (M, g) of dimension n, one can define the Yamabe
Laplacian, acting on functions, in the following way:

∆Y := ∇agab∇b −
n− 2

4(n− 1)
Sc,

where∇ denotes the Levi-Civita connection of g and Sc the scalar curvature. For the conformally
related metric ĝ = e2Υg, the associated Yamabe Laplacian is given by

∆̂Y = e−
n+2
2

Υ ◦∆Y ◦ e
n−2
2

Υ.

According to the transformation law |Volĝ| = enΥ|Volg| and to the diagram (2.2), this translates
into the conformal invariance of ∆Y viewed as an element of Dλ0,µ0(M), for the specific weights

λ0 =
n− 2

2n
, µ0 =

n+ 2

2n
and δ0 = µ0 − λ0 =

2

n
. (2.7)

Thus, the data of a conformal manifold (M, [g]) is enough to define ∆Y ∈ Dλ0,µ0(M). We write
it below as ∆M

Y (g) and we refer to it as the Yamabe or conformal Laplacian. One easily gets
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Proposition 2.1. The conformal Laplacian is a natural conformally invariant operator, i.e.

• it satisfies the naturality condition:

∆N
Y (Φ∗g) = Φ∗

(
∆M
Y (g)

)
, (2.8)

for all diffeomorphisms Φ : N →M and for all pseudo-Riemannian metric g on M ,

• it is conformally invariant, ∆M
Y (e2Υg) = ∆M

Y (g) for all Υ ∈ C∞(M).

More generally, a natural operator over pseudo-Riemannian manifolds is an operator that acts
between natural bundles, is defined over any pseudo-Riemannian manifold (M, g) and satisfies
an analogue of the naturality condition (2.8). It is said to be conformally invariant if it depends
only on the conformal class of g. For a general study of natural operators in the pseudo-Rie-
mannian setting, see the book [20].

From Proposition 2.1, we deduce that the conformal Laplacian ∆Y is invariant under the
action of conformal diffeomorphisms, which reads infinitesimally as

Lµ0X ◦∆Y = ∆Y ◦ Lλ0X , (2.9)

for all conformal Killing vector fields X. Here, as introduced in (2.1), Lλ0 and Lµ0 denote the
Lie derivatives of λ0- and µ0-densities. If the manifold (M, [g]) is locally conformally flat, then,
up to multiplication by a scalar, ∆Y is the unique second order operator acting on densities
which is invariant under the action (2.9) of conformal Killing vector fields.

2.4 Natural and conformally invariant quantization

Recall first the definition of a quantization on a smooth manifold M .

Definition 2.2. Let λ, µ ∈ R and δ = µ − λ. A quantization on M is a linear bijection QMλ,µ
from the space of symbols Sδ(M) to the space of differential operators Dλ,µ(M) such that

σk
(
QMλ,µ(S)

)
= S, ∀S ∈ Skδ (M), ∀ k ∈ N.

On locally conformally flat manifolds (M, [g]), for generic weights λ, µ, there exists a unique
conformally equivariant quantization [12], i.e. a unique quantization which intertwines the ac-
tions of the conformal Killing vector fields on Sδ(M) and on Dλ,µ(M). In the following, we need
an extension of the conformally equivariant quantization to arbitrary conformal manifolds. This
is provided by the notion of natural and conformally invariant quantization. The definition and
the conjecture of the existence of such a quantization were given for the first time in [22].

Definition 2.3. A natural and conformally invariant quantization is the data for every pseudo-
Riemannian manifold (M, g) of a quantization QMλ,µ(g), which satisfies

• the naturality condition:

QNλ,µ(Φ∗g)(Φ∗S) = Φ∗(QMλ,µ(g)(S)), ∀S ∈ Sδ(M), (2.10)

for all diffeomorphisms Φ : N →M and for all pseudo-Riemannian metric g on M .

• the conformal invariance: QMλ,µ(e2Υg) = QMλ,µ(g) for all Υ ∈ C∞(M).

In the following we refer to a quantization map by Qλ,µ, the dependence in the chosen pseudo-
Riemannian manifold (M, g) being understood. Accordingly, we drop the reference to M in the
spaces of densities Fλ, symbols Sδ and differential operators Dλ,µ.
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The concept of natural and conformally invariant quantization is an extension to quantizations
of the more usual one of natural conformally invariant operator, introduced in the previous
section. Restricting to conformally flat manifolds (M, [g]) and to Φ ∈ Diff(M) preserving [g],
the naturality condition (2.10) reads as conformal equivariance of the quantization map Qλ,µ.
Thus, the problem of the natural and conformally invariant quantization on an arbitrary ma-
nifold generalizes the problem of the conformally equivariant quantization on conformally flat
manifolds.

Remark that the bundles SkTM are natural bundles over (M, [g]). Hence, one can consider
natural and conformally invariant quantization restricted to the subspaces of symbols Skδ or

S≤kδ =
⊕

j≤k S
j
δ . In a first step, the proofs of the existence of a natural and conformally invariant

quantization at the second and the third orders were given respectively in [13] and [23], together
with explicit formulas. We provide the one at order 2, which we will need later on.

Theorem 2.4 ([13]). Let δ /∈
{

2
n ,

n+2
2n , 1,

n+1
n , n+2

n

}
. A natural and conformally invariant quanti-

zation Qλ,µ : S≤2
δ → D2

λ,µ is provided, on a pseudo-Riemannian manifold (M, g) of dimension n,
by the formulas

Qλ,µ(f) = f,

Qλ,µ(X) = Xa∇a +
λ

1− δ (∇aXa),

Qλ,µ(S) = Sab∇a∇b + β1(∇aSab)∇b + β2gab(∇a TrS)∇b
+ β3

(
∇a∇bSab

)
+ β4gab∇a∇b(TrS),+β5 Ricab S

ab + β6 Sc(TrS), (2.11)

where f , X, S are symbols of degrees 0, 1, 2 respectively and TrS = gabS
ab. Moreover the

coefficients βi entering the last formula are given by

β1 =
2(nλ+ 1)

2 + n(1− δ) ,

β2 =
n(λ+ µ− 1)

(2 + n(1− δ))(2− nδ) ,

β3 =
nλ(nλ+ 1)

(1 + n(1− δ))(2 + n(1− δ)) ,

β4 =
nλ(n2µ(2− λ− µ) + 2(nλ+ 1)2 − n(n+ 1))

(1 + n(1− δ))(2 + n(1− δ))(2 + n(1− 2δ))(2− nδ) ,

β5 =
n2λ(µ− 1)

(n− 2)(1 + n(1− δ)) ,

β6 =
n2λ(µ− 1)(nδ − 2)

(n− 1)(n− 2)(1 + n(1− δ))(2 + n(1− 2δ))
. (2.12)

In a second step, the proof of the existence of such a quantization, at an arbitrary order and
for generic values of λ, µ, was given in [9, 25, 30] in different ways. We provide a slightly refined
statement in the next section.

2.5 Adjoint operation and quantization

For all weights λ ∈ R, there exists a non-degenerate symmetric bilinear pairing

Fcλ ×Fc1−λ → R,

(ϕ,ψ) 7→
∫

M
ϕψ,
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where Fcλ is the space of compactly supported λ-densities. On a manifold M , this pairing is
Diff(M)-invariant since 1-density is the right object for integration. In consequence, we can
define an adjoint operation ∗ : Dλ,µ → D1−µ,1−λ by

(
ϕ,D∗ψ

)
= (Dϕ,ψ),

for all ϕ ∈ Fcλ and ψ ∈ Fc1−µ. We introduce the following subset of R2,

I =

{
(λ, µ) ∈ R2

∣∣µ− λ /∈ 1

2n
(N \ {0})

}
∪ {(λ0, µ0)},

where λ0 = n−2
2n and µ0 = n+2

2n are the weights of the conformal Laplacian (see (2.7)). The set
I is stable under the involutive map (λ, µ) 7→ (1− µ, 1− λ). Note that

σ2(∆Y ) = |Volg|δ0H,

where δ0 = µ0−λ0 and H = gijpipj in canonical coordinates. The proof of existence of a natural
and conformally invariant quantization Qλ,µ in [30] leads easily to the following statement.

Theorem 2.5. There exists a family (Qλ,µ)(λ,µ)∈I of natural and conformally invariant quan-
tizations that satisfies:

• the reality condition:

Qλ,µ(S)∗ = (−1)kQ1−µ,1−λ(S), ∀S ∈ Skδ , ∀ (λ, µ) ∈ I, (2.13)

• the factorization property:

Qλ0,λ0
(
|Volg|δ0HS

)
= Qµ0,λ0(S) ◦∆Y , ∀S ∈ Sk−δ0 ,

Qµ0,µ0
(
|Volg|δ0HS

)
= ∆Y ◦ Qµ0,λ0(S), ∀S ∈ Sk−δ0 , (2.14)

• the restriction of Qλ,µ to S≤2
δ is given by the formulas in (2.11) if (λ, µ) ∈ I \ {(λ0, µ0)}.

Proof. We prove the theorem in four steps.
In [30, Theorem 4.4], one of us determines that for (λ, µ) ∈ I there exists a natural and

conformally invariant quantization map Q′′′λ,µ.
From the above family of quantizations (Q′′′λ,µ)(λ,µ)∈I , we define (Q′′λ,µ)(λ,µ)∈I by

Q′′λ,µ : S 7→ 1

2

(
Q′′′λ,µ(S) + (−1)kQ′′′1−µ,1−λ(S)∗

)
, ∀S ∈ Skδ , ∀ (λ, µ) ∈ I.

The maps Q′′λ,µ are again natural and conformally invariant quantizations. Indeed, the adjoint
operation ∗ is natural, does not depend of the choice of metric on M and satisfies

σk
(
D∗
)

= (−1)kσk(D),

for all differential operators D of order k. The newly defined quantization maps clearly satisfy
the property (2.13) since ∗ is an involution.

For (λ, µ) ∈ I \{(λ0, λ0), (µ0, µ0)}, we define Q′λ,µ := Q′′λ,µ. On the space of traceless symbols
we set Q′λ0,λ0 := Q′′λ0,λ0 and Q′µ0,µ0 := Q′′µ0,µ0 . We extend both maps to the whole symbol space
by the formulas in (2.14). They are clearly still natural and conformally invariant and satisfy
the reality condition (2.13).

For all (λ, µ) ∈ I \{(λ0, µ0)}, we denote by Qλ,µ the natural and conformally invariant quan-

tizations restricted to S≤2
δ , given by the formulas (2.11). A direct computation shows that they

satisfy the reality condition (2.13) and the factorization property (2.14). For (λ, µ) = (λ0, µ0),
we set Qλ0,µ0 := Q′λ0,µ0 on S≤2

δ0
. We extend then the quantizations Qλ,µ (where (λ, µ) ∈ I) to

the whole symbol space by setting Qλ,µ := Q′λ,µ on S≥3
δ , for all (λ, µ) ∈ I. �
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In the following, the quantization maps Qλ,µ that we will use are always taken from a family
(Qλ,µ)(λ,µ)∈I provided by Theorem 2.5. In fact, we will need only four of them, namely: Qλ0,λ0 ,
Qµ0,µ0 , Qλ0,µ0 , Qµ0,λ0 . With such a convention, it is worth noticing that the conformal Laplacian
can be obtained as

∆Y = Qλ0,µ0
(
|Volg|δ0H

)
.

The conformal invariance of the symbol |Volg|δ0H translates into the conformal invariance of ∆Y .

3 On particular conformally invariant operators

First, we introduce notation for classical objects of the pseudo-Riemannian and conformal geo-
metries and recall basic facts about natural and conformally invariant operators. Then, we
classify the natural conformally invariant operators between particular subspaces of symbols.

3.1 More on pseudo-Riemannian and conformal geometry

We complete here Section 2.2, and use freely the notation introduced there.

First, we work over a pseudo-Riemannian manifold. The Riemann tensor admits the following
decomposition

Rab
c
d = Cab

c
d + 2δc[aPb]d + 2gd[bPa]

c, (3.1)

where Cab
c
d is the totally trace-free Weyl curvature, Pab = 1

n−2

(
Ricab− 1

2(n−1) Sc gab

)
is the

Schouten tensor, δba is the Kronecker delta and square brackets denote antisymmetrization of
enclosed indices. The Weyl tensor Cabcd is zero for the dimension n = 3. Note also that Cabcd

obeys the same symmetries of indices as Rabcd does. Further curvature quantities we shall need
are

J = gabPab and Aabc = 2∇[bPc]a,

where Aabc is the Cotton–York tensor and J is related to the scalar curvature via J = 1
2(n−1) Sc.

Bianchi identities have the from R[abc]d = 0 and ∇[aRbc]de = 0 and lead to

(n− 3)Aabc = ∇rCbc
r
a and ∇bPba = ∇aJ.

Second, we consider a conformal manifold (M, [g]). The Weyl tensor Cab
c
d is a conformal

invariant, i.e. it does not depend on the choice of the representative metric from [g]. The same is
true for Aabc in the dimension 3. Further, a choice of metric provides a canonical trivialization
of the bundle of λ-densities Fλ via the global section |Volg|λ (see Section 2.1). According to
the transformation rule |Volĝ|λ = enλΥ|Volg| if ĝ = e2Υg, we have the conformally invariant

object gab = gab⊗ |Volg|−
2
n , termed conformal metric, with the inverse gab in Γ(S2TM)⊗F2/n,

see e.g. [1] for details. (Note that the space of densities E [w] in [1] corresponds to F−w/n
in our notation.) The conformal metric gives a conformally invariant identification TM ∼=
T ∗M ⊗ F−2/n. In other words, we can raise and lower indices, with expense of the additional
density, in a conformally invariant way. For example, we get Cabcd ∈ Γ(S2(Λ2T ∗M)) ⊗ F−2/n.

Note also that gab and gab are parallel for any choice of a Levi-Civita connection from the
conformal class.
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3.2 Description of natural conformally invariant operators

Now we recall basic facts about natural and conformally invariant operators. Every natural
operator on the Riemannian structure (M, g) between natural bundles V1 and V2 is a linear
combination of terms of the form

g−1 · · · g−1

︸ ︷︷ ︸
r1

g · · · g︸ ︷︷ ︸
r2

(∇(i1)R) · · · (∇(is)R)︸ ︷︷ ︸
s

∇ · · ·∇︸ ︷︷ ︸
t

f (3.2)

to which one applies a GL(n)-invariant operation

Γ
(⊗

2r1+sTM ⊗
⊗

2r2+3s+i+tT ∗M ⊗ V1

)
−→ Γ(V2). (3.3)

Here f ∈ Γ(V1), g−1 stands for the inverse of the metric g, ∇(ij) denotes the ijth iterated
covariant derivative where ij ≥ 0, abstract indices are omitted, i = i1 + · · · + is, and ∇ and R
correspond to the choice of the metric g. The existence of a GL(n)-invariant operation (3.3)
gives in general constraints on the possible values of r1, r2, s, t, i. See [20] for details.

A natural operator on (M, g) is conformally invariant if it does not depend on the choice of
metric in the conformal class. Then, it defines a natural operator on the conformal structure
(M, [g]). It is convenient to use the conformal metric g instead of g and the inverse g−1 instead
of g−1 in (3.2) since they are conformally invariant, namely

g−1 · · ·g−1

︸ ︷︷ ︸
r1

g · · ·g︸ ︷︷ ︸
r2

(∇(i1)R) · · · (∇(is)R)︸ ︷︷ ︸
s

∇ · · ·∇︸ ︷︷ ︸
t

f

∈ Γ
(⊗

2r1+sTM ⊗
⊗

2r2+3s+i+tT ∗M ⊗ V1 ⊗ F 2
n

(r1−r2)

)
(3.4)

for f ∈ Γ(V1). It is generally a difficult problem to determine which linear combinations of terms
as in (3.2), together with suitable projections as in (3.3), give rise to a conformally invariant
operator. We shall need details only in specific cases.

3.3 Conformally invariant operators on the symbol space

This section concerns existence and uniqueness of natural and conformally invariant operators
of certain type. The first one is well-known and can be obtained as an easy consequence of [17],
or deduced from the general work [10] on curved BGG-sequences. We present a detailed proof to
demonstrate the technique which is used (in much more complicated setting) later in the proof
of Proposition 3.2.

Recall first that Γ(Sk,0TM) is the space of trace-less symmetric k-tensors. In terms of the
abstract index notation, a section f of

⊗k TM is denoted by fa1...ak . In the following, we write
f [a1...ak], f (a1...ak) and f (a1...ak)0 for the projections of f to Γ(ΛkTM), Γ(SkTM) and Γ(Sk,0TM),
respectively. Similar notation will be used for covariant indices.

Proposition 3.1. Up to multiplication by a scalar, there exists a unique natural conformally
invariant operator Sk0 → Sk+1

2/n . It is given by the conformal Killing operator G, such that for

all f ∈ Sk0 ,

(G(f))a0...ak = ∇(a0fa1...ak)0 . (3.5)

Proof. Identifying Sk0 and Sk+1
2/n with corresponding spaces of sections of symmetric tensors,

we consider natural and conformally invariant operators Γ(SkTM) → Γ(Sk+1TM ⊗ F2/n). By
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12 J.-P. Michel, F. Radoux and J. Šilhan

naturality, such operators are linear combinations of terms in (3.2) with V1 = SkTM , composed
with GLn-invariant maps

⊗
2r1+sTM ⊗

⊗
2r2+3s+i+tT ∗M ⊗ SkTM ⊗ F 2

n
(r1−r2) −→ Sk+1TM ⊗ F2/n.

Explicitly, those maps may consist of: contracting covariant and contravariant indices, project-
ing the covariant and contravariant tensors on tensors of prescribed symmetry type (given by
a Young diagram) and tensorizing with the density |Volg|δ for arbitrary δ ∈ R. The conformal in-
variance does not allow for the last operation, hence r1−r2 = 1. The difference between the num-
ber of covariant and contravariant indices is a constant therefore (2r1 +s+k)−(2r2 +3s+i+t) =
k + 1, i.e. 2s+ i+ t = 1. This means s = i = 0 and t = 1. The sought operators are then first
order (gradient) natural operators and using moreover the conformal invariance, the statement
follows from the classification in [17]. �

The next proposition is a crucial technical tool in the following.

Proposition 3.2. Every natural conformally invariant operator Sk,00 → Sk−1
2/n has its target

space in Sk−1,0
2/n ⊆ Sk−1

2/n . The space of natural conformally invariant operators Sk,00 → Sk−1,0
2/n

on a pseudo-Riemannian manifold (M, g) is at most two-dimensional and depends on k ∈ N as
follows.

(i) This space is trivial for k = 1.

(ii) If k = 2 or n = 3, this space is one-dimensional and generated by the operator F such

that, for all f ∈ Sk,00 ,

(F(f))a1...ak−1 = Cr
st

(a1∇rfa2...ak−1)0st − (k + 1)Ast
(a1fa2...ak−1)0st.

(iii) If k = 3 and n > 3, this space is two-dimensional and generated by two operators,

F1 and F2, such that for all f ∈ Sk,00 ,

(F1(f))a1...ak−1 = (F(f))a1...ak−1 +
k − 2

n+ 2k − 2
C(a1

r
a2
s∇tfa3...ak−1)0rst,

(F2(f))a1...ak−1 = 4C(a1
r
a2
s∇tfa3...ak−1)0rst + (n+ 2k − 2)(∇rCs

(a1
t
a2)fa3...ak−1)0rst

+ 2(n+ 2k − 2)Ars
(a1fa2...ak−1)0rs.

Remark 3.3. Let (xi, pi) be a canonical coordinate system on T ∗M . We can then write the
operators G and F as follows on Sk0

G = Π0 ◦
(
gijpi∇j

)
and F = Π0 ◦ gimpi∂pj∂pl

(
Ck

jlm∇k − (k + 1)Ajlm

)
, (3.6)

where Π0 : Sk−1
0 → Sk−1,0

2/n is the canonical projection on trace-less symbols. Actually, we will see
in the sequel that the conformal Killing operator G can be used to define the conformal Killing
tensors whereas the operator F occurs in the computation of the obstruction to the existence of
conformal symmetries of ∆Y .

Let us note that the proof of Proposition 3.2 is long, technical and interesting rather for
experts in conformal geometry. The reader interested mainly in results about symmetries can
continue the reading in Section 4 (details from the proof will not be needed there).
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Second Order Symmetries of the Conformal Laplacian 13

Proof. We study natural and conformally invariant operators Γ(Sk,0TM)→Γ(Sk−1TM⊗F2/n).
In the first part of the proof we consider the naturality and in the second part the conformal
invariance.

I. Naturality. We start in a similar way as in the proof of Proposition 3.1. By naturality,
the considered operators are linear combinations of terms in (3.2) composed with GLn-invariant
maps

⊗
2r1+sTM ⊗

⊗
2r2+3s+i+tT ∗M ⊗ SkTM ⊗ F 2

n
(r1−r2) −→ Sk−1TM ⊗ F2/n.

The conformal invariance of the discussed operators leads to r1− r2 = 1 and the GLn-invariance
of the maps above imposes (2r1 +s+k)−(2r2 +3s+ i+ t) = k−1, i.e. 2s+ i+ t = 3. This means
either s = i = 0, t = 3 or s = i = 1, t = 0 or s = t = 1, i = 0. Hence, omitting abstract indices,
the natural operators Γ(Sk,0TM)→ Γ(Sk−1TM ⊗ F2/n) are a linear combination of terms

g−1 · · ·g−1

︸ ︷︷ ︸
r+1

g · · ·g︸ ︷︷ ︸
r

∇∇∇f, g−1 · · ·g−1

︸ ︷︷ ︸
r+1

g · · ·g︸ ︷︷ ︸
r

R∇f, g−1 · · ·g−1

︸ ︷︷ ︸
r+1

g · · ·g︸ ︷︷ ︸
r

(∇R)f, (3.7)

where r ≥ 0 and f ∈ Γ(Sk,0TM), each of which is followed by a GL(n)-invariant projection to
Γ(Sk−1TM ⊗ F2/n). Irreducible components of the target bundle Sk−1TM ⊗ F2/n are

Sk−1,0TM ⊗ F2/n, Sk−3,0TM, Sk−5,0TM ⊗ F−2/n, . . . ,

but since f is trace-free, one easily verifies from (3.7) that only possible target bundles are
Sk−1,0TM ⊗ F2/n and Sk−3,0TM . In other words, in the expressions (3.7), one can restrict to
r = 0.

It remains to describe possible GL(n)-invariant projections of the terms in (3.7) in details.
Using the decomposition (3.1) of R into Weyl and Schouten tensors, they split into five terms:
g−1∇∇∇f , g−1C∇f , g−1(∇C)f , g−1P∇f and g−1(∇P)f .

We shall start with natural operators Γ(Sk,0TM)→ Γ(Sk−1,0TM ⊗ F2/n). In this situation,
at least one of the two indices above g−1 in the expression of the operator has to be contracted
with a covariant index. For an operator of type g−1∇∇∇f , the two resulting operators are (up
to the order of covariant derivatives) respectively

∇r∇r∇sfa1...ak−1s, ∇(a1∇s∇tfa2...ak−1)0st. (3.8)

Since the change of the order of covariant derivatives gives rise to curvature operators of the
form g−1R∇f and g−1(∇R)f , the previous display is sufficient for operators of type g−1∇∇∇f .
Using that C is completely trace-free and (n − 3)Aabc = ∇rCbc

r
a, the different possibilities of

contraction of indices for the expressions g−1C∇f and g−1(∇C)f lead to the operators

Cr
st

(a1∇rfa2...ak−1)0st, C(a1
r
a2
s∇tfa3...ak−1)0rst,

(
∇rCs

(a1
t
a2)f

a3...ak−1

)
0
rst
, Ars

(a1fa2...ak−1)0rs. (3.9)

Thanks to the decomposition of P into irreducible components and to the equality∇aPab = ∇bJ ,
we see that the different configurations of indices in the expressions g−1P∇f and g−1(∇P)f
give rise to the operators

P(rs)0∇rfsa1...ak−1 , P(rt)0g
t(a1∇sfa2...ak−1)0rs, Prs∇(a1fa2...ak−1)0rs,

J∇rfa1...ak−1r, (∇(rPst)0)gt(a1fa2...ak−1)0rs, (∇rJ)fa1...ak−1r. (3.10)

Hence all natural operators Γ(Sk,0TM)→ Γ(Sk−1,0TM⊗F2/n) are linear combinations of terms
in (3.8)–(3.10).
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14 J.-P. Michel, F. Radoux and J. Šilhan

A similar discussion can be applied to natural operators Γ(Sk,0TM) → Γ(Sk−3,0TM). In
this situation, none of the two indices of g−1 is contracted in the expressions (3.7). Reasoning
as above, using the properties of symmetry of C and the fact that C and f are trace-free, we
obtain (since the target bundle is now Sk−3,0TM) a simpler list of possible terms:

∇r∇s∇tfa1...ak−3rst, P(rs)0∇tfa1...ak−3rst, (∇rPst)fa1...ak−3rst, (3.11)

for k ≥ 3. Hence all natural operators Γ(Sk,0TM) → Γ(Sk−3,0TM) are linear combinations of
terms in (3.11).

II. Conformal invariance. We shall denote quantities corresponding to the conformally
related metric ĝ = e2Υg and the corresponding Levi-Civita connection ∇̂ by R̂abcd, P̂ab, Ĵ
and Âabc. (The Weyl tensor is missing here since Ĉabcd = Cabcd.) This transformation is
controlled by the one-form Υa = ∇aΥ, see e.g. [1] for details. Explicitly, one can compute that

P̂ab = Pab −∇aΥb + ΥaΥb −
1

2
ΥrΥrgab, (3.12)

Ĵ = J−∇rΥr −
n− 2

2
ΥrΥr and Âabc = Aabc + ΥrCbc

r
a (3.13)

and also that

∇̂(aP̂bc)0 = ∇(aPbc)0 −∇(a∇bΥc)0 + 4Υ(a∇bΥc)0 − 4Υ(aΥbΥc)0 − 2Υ(aPbc)0 , (3.14)

∇̂aĴ = ∇aJ−∇a∇rΥr − (n− 2)Υr∇rΥa + 2Υa∇rΥr − 2ΥaJ + (n− 2)ΥaΥ
rΥr, (3.15)

∇̂(
a
Cb

d

c
)
0

e = ∇(aCb
d
c)0
e − 4Υ(aCb

d
c)0
e + 2Υrδ(a

(dCb
e)
c)
r. (3.16)

We shall start with operators Γ(Sk,0TM) → Γ(Sk−1,0TM ⊗ F2/n). First observe that the
space of such natural and conformally invariant operators is trivial in the flat case [4, 5] hence
the two terms of (3.8) cannot appear. We need to know how remaining terms in (3.9) and (3.10)
transform under the conformal rescaling ĝ = e2Υg. First observe that the rescaling of first order
expressions we need is

∇̂rfa1...ak−1r = ∇rfa1...ak−1r + (n+ 2k − 2)Υrf
a1...ak−1r,

∇̂[bfc]
a1...ak−1 = ∇[bfc]

a1...ak−1 + (k + 1)Υ[bfc]
a1...ak−1 + (k − 1)Υrδ

(a1
[b fc]

a2...ak−1)r,

∇̂(a1fa2...ak−1)0
bc = ∇(a1fa2...ak−1)0

bc + 2Υ(a1fa2...ak−1)0
bc − 2Υ(bfc)

a1...ak−1

+ 2Υrδ
(a1
(b fc)

a2...ak−1)0r,

∇̂(bfc)
a1...ak−1 = ∇(bfc)

a1...ak−1 + (k − 1)Υ(bfc)
a1...ak−1 − (k − 1)Υ(a1fa2...ak−1)

bc

+ gbcΥrf
a1...ak−1r + (k − 1)Υrδ

(a1
(b fc)

a2...ak−1)r. (3.17)

We are interested in linear combinations of terms in (3.9) and (3.10) which are independent on
the rescaling ĝ = e2Υg. Considering formulas (3.12)–(3.17), we observe that the term ∇(a∇bΥc)0

appears only in (3.14) and the term ∇a∇rΥr appears only on the right hand side of (3.15). This
means, terms (∇rJ)fa1...ak−1r and (∇(rPst)0)gt(a1fa2...ak−1)0rs do not appear in the required
linear combination.

The Weyl tensor appears in the conformal transformation of the terms in (3.9) but not of the
ones in (3.10). Therefore, we look for conformally invariant linear combinations

x1Cr
st

(a1∇rfa2...ak−1)0st + x2C(a1
r
a2
s∇tfa3...ak−1)0rst

+ x3

(
∇rCs

(a1
t
a2)f

a3...ak−1

)
0
rst

+ x4Ars
(a1fa2...ak−1)0rs (3.18)
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and

y1J∇rfa1...ak−1r + y2Prs∇(rfs)a1...ak−1

+ y3Pr
(a1∇sfa2...ak−1)0rs + y4Prs∇(a1fa2...ak−1)0rs, (3.19)

where Prs = P(rs)0 denotes the trace-free part of P. In other words, we search for scalars
xi, yj ∈ R such that both (3.18) and (3.19) are invariant independently.

First we discuss (3.18) which is possible only for k ≥ 2 and some terms only for k ≥ 3.
Assuming k ≥ 3, conformal transformations of these terms are

Cr
st

(a1∇̂rfa2...ak−1)0st = Cr
st

(a1∇̂rfa2...ak−1)0st + (k + 1)ΥrC
r
st

(a1fa2...ak−1)0st

+ (k − 2)C(a1
st
a2Υrf

a3...ak−1)0str,

C(a1
r
a2
s∇̂tfa3...ak−1)0rst = C(a1

r
a2
s∇tfa3...ak−1)0rst − (n+ 2k − 2)C(a1

rs
a2Υtf

a3...ak−1)0rst,

(
∇̂rCs

(a1
t
a2)f

a3...ak−1

)
0
rst

= (∇rCs
(a1

t
a2)fa3...ak−1)0rst + 4C(a1

rs
a2Υtf

a3...ak−1)0rst

− 2ΥrC
r
st

(a1fa2...ak−1)0st,

Ârs
(a1fa2...ak−1)0rs = Ars

(a1fa2...ak−1)0rs + ΥrC
r
st

(a1fa2...ak−1)0st

using (3.17), (3.16) and (3.13). Now, considering where the term ΥrC
r
st

(a1fa2...ak−1)0st appears
in the previous display, we see that (k + 1)x1 − 2x3 + x4 = 0. Considering the other term
C(a1

rs
a2Υtf

a3...ak−1)0rst, we conclude that (k− 2)x1− (n+ 2k− 2)x2 + 4x3 = 0. Solutions of this
pair of linear equations are generated by (x1, x2, x3, x4) =

(
n+2k−2, k−2, 0,−(k+1)(n+2k−2)

)

and (x1, x2, x3, x4) =
(
0, 4, n+2k−2, 2(n+2k−2)

)
, therefore the space of corresponding invariant

linear operators is generated by the operators F1 and F2 defined in the following way:

(F1(f))a1...ak−1 = Cr
st

(a1∇rfa2...ak−1)0st − (k + 1)Ars
(a1fa2...ak−1)0rs

+
k − 2

n+ 2k − 2
C(a1

r
a2
s∇tfa3...ak−1)0rst,

(F2(f))a1...ak−1 = 4C(a1
r
a2
s∇tfa3...ak−1)0rst + (n+ 2k − 2)(∇rCs

(a1
t
a2)fa3...ak−1)0rst

+ 2(n+ 2k − 2)Ars
(a1fa2...ak−1)0rs.

This shows that the operators in the statement of the proposition for k ≥ 3 are invariant.
In the case k = 2 only some terms from (3.18) can appear. Specifically, we study the

conformal invariance of the linear combination

x1Cr
st
a∇rfst + x4Ars

af rs (3.20)

for the section fab in Γ(S2,0TM). Since ∇̂af bc = ∇af bc + 2Υaf
bc − 2Υ(bf c)a + 2δa

(bΥrf
c)r,

conformal transformations of terms in the previous display are

Cr
st
a∇̂rf st = Cr

st
a∇̂rf st + 3ΥrC

r
st
afst and

Ârs
af rs = Ars

af rs + ΥrC
r
st
afst.

By the same reasoning as in the case k ≥ 3, we obtain that the operator given in (3.20) is
invariant if and only if (x1, x4) is a multiple of (1,−3). In the case k = 2, the only invariant
operators are thus the multiples of the operator F defined by

(F(f))a = Cr
st
a∇rfst − 3Ars

af rs.

Now we shall discuss terms (3.19) and we assume k ≥ 2 first. Consider an arbitrary but
fixed point x ∈ M . We can choose the function Υ such that Υa(x) = 0, ∇(aΥb)0(x) = Φab(x)
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and ∇rΥr(x) = Ψ(x) for any prescribed values of Φab(x) and Ψ(x). Therefore, the conformal
transformation of terms in (3.19) is

Ĵ∇̂rfa1...ak−1r = J∇rfa1...ak−1r −Ψ∇rfa1...ak−1r,

P̂rs∇̂(rfs)a1...ak−1 = Prs∇(rfs)a1...ak−1 − Φrs∇(rfs)a1...ak−1 ,

P̂r
(a1∇̂sfa2...ak−1)0rs = Pr

(a1∇sfa2...ak−1)0rs − Φr
(a1∇sfa2...ak−1)0rs,

P̂rs∇̂(a1fa2...ak−1)0rs = Prs∇(a1fa2...ak−1)0rs − Φrs∇(a1fa2...ak−1)0rs

at the point x (which is for simplicity omitted in the previous display). Choosing Ψ(x) 6= 0
and Φrs(x) = 0, the invariance of (3.19) means that y1 = 0. Henceforth we assume Ψ(x) = 0
and Φrs(x) 6= 0. To determine y2, y3 and y4, we shall test invariance of (3.19) for fa1...ak

with specific properties at x. First assume that ∇bfa1...ak(x) = ∇(bfa1...ak)(x), or equivalently
that ∇bfa1...ak(x) = ∇a1f ba2...ak(x). This in particular implies that ∇rfa1...ak−1r(x) = 0 and the
invariance of (3.19) then means that y2+y4 = 0. Second, we assume ∇(bfa1...ak)(x) = 0 or equiv-
alently 2∇(bf c)a1...ak−1(x)+(k−1)∇(a1fa2...ak−1)bc(x) = 0. This also implies ∇rfa1...ak−1r(x) = 0
and the invariance of (3.19) now means that −k−1

2 y2 + y4 = 0. Overall, this yields y2 = y4 = 0,
and y3 = 0 follows. All scalars in (3.19) are thus equal to zero. This completes the proof of the
part (ii) of the proposition.

If k = 1, (3.19) reduces to the linear combination y1J∇rf ra + y2Prs∇rf sa. As above, the
choice Ψ(x) 6= 0 and Φrs(x) = 0 shows that y1 = 0. Hence y2 = 0 and the part (i) follows.

In order to complete the proof of the part (iii), it remains to describe natural and conformally
invariant operators Γ(Sk,0TM) → Γ(Sk−3TM). The space of these operators is also trivial in
the flat case [4, 5], hence the first term in (3.11) cannot appear. Thus the required operator is
a linear combination of the form

x1P(rs)0∇tfa1...ak−3rst + x2(∇rPst)fa1...ak−3rst,

where x1, y1 ∈ R. Reasoning similarly as above, we observe that ∇(a∇bΥc)0 appears only in the
conformal transformation of the second term in the previous display. Therefore x2 = 0, hence
also x1 = 0 and the proposition follows. �

4 Classif ication of second order symmetries of ∆Y

We start this section with the definition of the algebra A of conformal symmetries of the confor-
mal Laplacian. Afterwards, we provide our main result: a complete description of the space A2

of second order conformal symmetries.

4.1 The algebra of symmetries of the conformal Laplacian

Let (M, [g]) be a conformal manifold of dimension n. Fixing a metric g ∈ [g], we can regard
the conformal Laplacian, ∆Y = ∇agab∇b − n−2

4(n−1) Sc, as acting on functions. The symmetries
of ∆Y are defined as differential operators which commute with ∆Y . Hence, they preserve
the eigenspaces of ∆Y . More generally, conformal symmetries D1 are defined by the weaker
algebraic condition

∆Y ◦D1 = D2 ◦∆Y , (4.1)

for some differential operator D2, so that they only preserve the kernel of ∆Y . The operator ∆Y

can be considered in equation (4.1) as acting between different line bundles and in particular as
an element of Dλ0,µ0 , where λ0 = n−2

2n , µ0 = n+2
2n . With this choice, ∆Y is conformally invariant
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Second Order Symmetries of the Conformal Laplacian 17

and the space of conformal symmetries depends only on the conformal class of the metric g. It
is stable under linear combinations and compositions.

The operators of the form P∆Y , i.e. in the left ideal generated by ∆Y , are obviously con-
formal symmetries. Since they act trivially on the kernel of ∆Y , they are considered as trivial.
Following [15, 18, 26], this leads to

Definition 4.1. Let (M, [g]) be a conformal manifold with conformal Laplacian ∆Y ∈ Dλ0,µ0 .
The algebra of conformal symmetries of ∆Y is defined as

A := {D1 ∈ Dλ0,λ0 | ∃D2 ∈ Dµ0,µ0 s.t. D2 ◦∆Y = ∆Y ◦D1},

and the subspace of trivial symmetries as

(∆Y ) := {A∆Y |A ∈ Dµ0,λ0}.

Thus, A is a subalgebra of Dλ0,λ0 and (∆Y ) is the left ideal generated by ∆Y in Dλ0,λ0 . The
filtration by the order on Dλ0,λ0 induces a filtration on A and we denote by

Ak := A ∩Dkλ0,λ0

the algebra of conformal symmetries of order k. Obviously, A0 ' R is the space of constant
functions, identified with zero order operators on λ0-densities. Moreover, the invariance of ∆Y

under the action of conformal Killing vector fields, see (2.9), shows that A1 is the direct sum
of A0 with the space of Lie derivatives Lλ0X ∈ D1

λ0,λ0
along conformal Killing vector fields X.

Since A is an algebra, A2 contains in particular Lλ0X ◦ Lλ0Y for X, Y conformal Killing vector
fields.

4.2 The algebra of symmetries of the null geodesic flow

Let (M, g) be a pseudo-Riemannian manifold and (xi, pi) denote a canonical coordinate system
on T ∗M . The inverse metric g−1 pertains to Γ(S2TM) and identifies with H := gijpipj ∈ S0,
where S0 = Pol(T ∗M) ∼= Γ(STM) (see Section 2.1). Along the isomorphism T ∗M ∼= TM
provided by the metric, the Hamiltonian flow of H corresponds to the geodesic flow of g.

The symmetries of the geodesic flow are given by functions K ∈ S0 which Poisson commute
with H. They coincide with the symmetric Killing tensors. The null geodesic flow, i.e. the
geodesic flow restricted to the level set H = 0, depends only on the conformal class of g. It
admits additional symmetries, namely all the functions K ∈ S0 such that

{H,K} ∈ (H),

where {·, ·} stands for the canonical Poisson bracket on T ∗M , defined in (2.3), and (H) for the
ideal spanned by H in S0. The linearity and Leibniz property of the Poisson bracket ensure that
the space of symmetries of the null geodesic flow is a subalgebra of S0. Besides, remark that all
the functions in (H) are symmetries which act trivially on the null geodesic flow.

Definition 4.2. Let (M, g) be a pseudo-Riemannian manifold and H ∈ S0 the function asso-
ciated to g. The algebra of symmetries of the null geodesic flow of g is given by the following
subalgebra of S0,

K := {K ∈ S0 | {H,K} ∈ (H)}.
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In particular, the algebra K contains the ideal (H) of trivial symmetries. It inherits the
gradation of S0 by the degree,

Kk := K ∩ Sk0 .

The space K0 is the space of constant functions on T ∗M . The Hamiltonian flows of functions
in K1 coincide with the Hamiltonian lift to T ∗M of the conformal Killing vectors on (M, [g]). For
higher degrees, the elements in K are symmetric conformal Killing tensors whose Hamiltonian
flows do not preserve the configuration manifold M . They are symmetries of the whole phase
space but not of the configuration manifold and often named hidden symmetries by physicists.

Proposition 4.3. The elements K ∈ Kk are symmetric conformal Killing k-tensors. They are
characterized equivalently as:

• symmetric tensors of order k s.t. ∇(a0Ka1...ak)0 = 0,

• symbols of degree k satisfying {H,K} ∈ (H),

• elements of Sk0 in the kernel of the conformal Killing operator G (see (3.5) or (3.6)).

The proof is both classical and straightforward, we let it to the reader. The next proposition
is essential to determine the algebra A of conformal symmetries.

Proposition 4.4. If D1 ∈ Ak then σk(D1) ∈ Kk. Under the identification grDλ0,λ0 ∼= S0, the
associated graded algebra grA becomes a subalgebra of K and gr(∆Y ) identifies with (H).

Proof. Suppose that D1 is a conformal symmetry of order k, i.e. satisfies ∆Y ◦D1 = D2◦∆Y for
some D2. Working in the algebra Dλ0,λ0 we deduce that [∆Y , D1] ∈ (∆Y ) and the property (2.5)
leads then to {H,σk(D1)} ∈ (H), i.e. σk(D1) ∈ Kk. The inclusion grA ≤ K follows. As
σ2(∆Y ) = H, the property (2.4) of the principal symbol maps implies that gr(∆Y ) ∼= (H). �

4.3 Second order conformal symmetries

We adapt the strategy used in [26], dealing with conformally flat manifolds. Thanks to a natural
and conformally invariant quantization, we get a first description of the potential obstruction
for a conformal Killing tensor giving rise to a conformal symmetry of ∆Y .

Theorem 4.5. Let Qλ,µ be a family of natural and conformally invariant quantizations as in
Theorem 2.5. We get then

∆Y ◦ Qλ0,λ0(S)−Qµ0,µ0(S) ◦∆Y = Qλ0,µ0
(
2G(S) + Obs(S)

)
, ∀S ∈ S≤2

0 . (4.2)

The operator Obs is the natural and conformally invariant operator defined by

Obs =
2(n− 2)

3(n+ 1)
F,

where (F(S))a = Cr
st
a∇rSst − 3Ars

aSrs for S ∈ S2
0 and we set F(S) = 0 for S ∈ S≤1

0 .

Proof. According to (2.6), we have S2
0 = S2,0

0 ⊕ S2,1
0 and S ∈ S2,1

0 is of the following form
S = (|Volg|δ0H)S0 with S0 ∈ F−δ0 . By Theorem 2.5, we have the identities

Qλ0,λ0(S) = Qµ0,λ0(S0) ◦∆Y and Qµ0,µ0(S) = ∆Y ◦ Qµ0,λ0(S0).

Besides, from the expressions of the operators G and F (see e.g. (3.6)), we deduce

G(S) = 0 and Obs(S) = 0.

Hence the equality (4.2) holds for all S ∈ S2,1
0 .
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Next, we define a natural and conformally invariant operator QS on D2
λ0,λ0

by D 7→ ∆Y ◦
D −D ◦∆Y . Pulling this map back to trace-free symbols via the quantization maps,

D2
λ0,λ0

QS // D3
λ0,µ0

(S≤1
0 ⊕ S2,0

0 )

Qλ0,λ0

OO

CS
// S≤3
δ0

Qλ0,µ0

OO

this leads to a natural and conformally invariant operator CS on S≤1
0 ⊕S2,0

0 . Since ∆Y is formally
self-adjoint and the quantization maps satisfy the reality condition (2.13), we deduce that, for

all S ∈ Sk,00 ,

∆Y ◦ Qλ0,λ0(S)−Qµ0,µ0(S) ◦∆Y

is of degree k + 1 and is formally skew-adjoint (resp. self-adjoint) if k is even (resp. odd). As
such, it is of the form Qλ0,µ0(P ), with P ∈ S3

δ0
⊕ S1

δ0
if S is of degree 2, P ∈ S2

δ0
⊕ S0

δ0
if S is

of degree 1 and P ∈ S1
δ0

if S is of degree 0. We can reduce accordingly the target space of CS
restricted to homogeneous symbols. Applying Proposition 3.1 and Proposition 3.2, we deduce
that CS = aG + bF for some real constants a, b. We have then

∆Y ◦ Qλ0,λ0(S)−Qµ0,µ0(S) ◦∆Y = Qλ0,µ0
(
aG(S) + bF(S)

)
, ∀S ∈ S≤2

0 . (4.3)

It is straightforward to prove that a = 2. To prove b = 2(n−2)
3(n+1) , we study a specific conformal

symmetry of ∆Y .

Lemma 4.6. Let η be the pseudo-Euclidean flat metric of signature (p, q), h a non-vanishing
function on R2 and n = p + q + 2. Let (M0, g) be the pseudo-Riemannian manifold (R2 ×
Rn−2, g0 × η), where the metric on R2 is determined by (g0)−1 = h(x1, x2)p2

1 + p2
2 in canonical

Cartesian coordinates (xi, pi) on T ∗Rn. Then, K = p2
3 is a Killing tensor on (M0, g), and we

have the following relation:

∆Y ◦ Qλ0,λ0(K)−Qµ0,µ0(K) ◦∆Y = Qλ0,µ0(Obs(K)) 6= 0.

Proof. Using the relation that links the coefficients of g and the Christoffel symbols Γijk of

the associated Levi-Civita connection, it is obvious that Γijk = 0 if at least one of the indices i,
j, k is greater than or equal to 3. Thus, the only non-vanishing components of the Riemann
tensor and the Ricci tensor associated with g are given by the corresponding components of the
Riemann tensor and the Ricci tensor of g0. In the same way, the scalar curvature of g is equal
to the scalar curvature of g0.

Using these facts and the formula for Qλ0,λ0(K) presented in the proof of Proposition 4.9, it
is easy to see that

Qλ0,λ0(K) = Qµ0,µ0(K) = ∂2
x3 +

1

2(n− 1)(n+ 1)
Sc .

By a direct computation, we obtain the following relation:

∆Y ◦ Qλ0,λ0(K)−Qµ0,µ0(K) ◦∆Y

= [∆Y ,Qλ0,λ0(K)] =
1

(n− 1)(n+ 1)
Qλ0,µ0(gij(∂i Sc)pj) + f,

with f ∈ C∞(M). According to (4.3), the function f vanishes.
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Besides, we can compute easily the Cotton–York tensor A associated with g. Indeed, if P
denotes the Schouten tensor, we have

Aijk = 2∇[iPj]k =
2

n− 2
∇[i

(
Ricj]k−

1

2(n− 1)
gj]k Sc

)
.

Using the peculiar form of K and the remark done previously about the Christoffel symbols and
the curvature tensors of g, it is obvious that

AijkK
jk = − 1

2(n− 1)(n− 2)
∂i Sc

for all i. The conclusion follows immediately. �

By naturality of the map CS defined above, the coefficient b in (4.3) depends only on the

signature of the metric. As b is equal to 2(n−2)
3(n+1) in the example presented in the previous lemma,

where the dimension M0 is of arbitrary dimension n and g of arbitrary signature, we conclude
that b = 2(n−2)

3(n+1) in (4.3). �

Obviously, we have Obs(S) = 0 if S is a symbol of degree 0 or 1. Thus, we recover that
A1 ∼= K1 ⊕ K0 and the isomorphism is provided by Qλ0,λ0 . Since the symmetric conformal
Killing tensors K satisfy GK = 0, we deduce the following

Corollary 4.7. Let (M, g) be a pseudo-Riemannian manifold of dimension n endowed with
a symmetric conformal Killing 2-tensor K. The operator

Qλ0,λ0(K) = Kab∇a∇b +
n

n+ 2
(∇aKab)∇b

+
n(n− 2)

4(n+ 2)(n+ 1)
(∇a∇bKab)− n+ 2

4(n+ 1)
RicabK

ab,

is a conformal symmetry of ∆Y if and only if Obs(K) = 0.

Proof. Indeed, the condition is obviously sufficient. Next, the condition is necessary because
if Qλ0,λ0(K) is a conformal symmetry of ∆Y , there exists a differential operator D such that

∆Y ◦ Qλ0,λ0(K) = D ◦∆Y .

We have then successively, using Theorem 4.5:

0 = ∆Y ◦ Qλ0,λ0(K)−D ◦∆Y

= (∆Y ◦ Qλ0,λ0(K)−Qµ0,µ0(K) ◦∆Y ) + (Qµ0,µ0(K) ◦∆Y −D ◦∆Y )

= Qλ0,µ0(Obs(K)) + (Qµ0,µ0(K)−D)∆Y .

The operator Qλ0,µ0(Obs(K)) is of order one but not the operator (Qµ0,µ0(K)−D)∆Y , unless
it vanishes. Hence, both terms Qλ0,µ0(Obs(K)) and (Qµ0,µ0(K) − D)∆Y have to vanish and
then Obs(K) = 0. �

In particular, on a conformally flat manifold, all the conformal Killing 2-tensors give rise to con-
formal symmetries of ∆Y after quantization by Qλ0,λ0 , as proved in [26]. We are now in position
to prove our main theorem, which provides a full description of the conformal symmetries of ∆Y

given by second order differential operators. The isomorphism Γ(TM) ∼= Γ(T ∗M) provided by
the metric is denoted by [.
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Theorem 4.8. The second order conformal symmetries of ∆Y are classif ied as follows:

(i) A1 =
{
Lλ0X + c | c ∈ R and X ∈ K1

}
,

(ii) A2/A1 ∼= {K ∈ K2 |Obs(K)[ is an exact 1-form}, and if K ∈ K2 satisfies Obs(K)[

= −2df , with f ∈ C∞(M), the corresponding element in A2/A1 is given by

Qλ0,λ0(K) + f.

Proof. We deduce from Proposition 4.4 that the principal symbolK of a second-order conformal
symmetry D1 is a symmetric conformal Killing 2-tensor. Since quantization maps are bijective,
the operator D1 reads as

D1 = Qλ0,λ0(K +X + f),

with f and X symbols of degree 0 and 1 respectively. Theorem 4.5 implies that

∆Y ◦D1 −Qµ0,µ0(K +X + f) ◦∆Y = Qλ0,µ0(2G(X) + Obs(K) + 2G(f)).

Hence ∆Y ◦D1 ∈ (∆Y ) leads to G(X) ∈ (H). By definition of G, this means that G(X) = 0,
i.e. X ∈ K1. As the symbols Obs(K) and G(f) are of degree 1, they cannot pertains to (∆Y ).
Therefore, ∆Y ◦D1 ∈ (∆Y ) is equivalent to X ∈ K1 and Obs(K) + 2G(f) = 0.

The items (i) and (ii) in the statement of the theorem are then easily proved. �

4.4 Second order symmetries

The general formula (2.11) for the natural and conformally invariant quantization on symbols
of degree 2 leads to the following result.

Proposition 4.9. Let (M, g) be a pseudo-Riemannian manifold of dimension n endowed with
a symmetric Killing 2-tensor K. The operator

Qλ0,λ0(K) = Qµ0,µ0(K) = Kab∇a∇b + (∇aKab)∇b −
n− 2

4(n+ 1)

(
∇a∇bKab

)
(4.4)

− n+ 2

4(n+ 1)
RicabK

ab +
1

2(n− 1)(n+ 1)
Sc
(
gabK

ab
)
,

is a symmetry of ∆Y , i.e. [∆Y ,Qλ0,λ0(K)] = 0, if and only if Obs(K) = 0.

Proof. Let (xi, pi) be a canonical coordinate system on T ∗M . The Killing equation satisfied
by K reads as gijpi∇jK = 0. Applying the trace operator Tr = gij∂pi∂pj we deduce that

gkl(∇k TrK)∇l = −2(∇iKil)∇l and gkl(∇k∇l TrK) = −2∇i∇lKil.

Moreover, if λ = µ and δ = 0, we have β1− 2β2 = 1 and β3− 2β4 = n2λ(1−λ)
(n+1)(n+2) , where the βi are

defined in (2.12). The formula for the quantization Qλ,λ reduces then, for K a Killing tensor, to

Qλ,λ(K) = Kab∇a∇b +
(
∇aKab

)
∇b −

n2λ(1− λ)

(n+ 1)(n+ 2)

(
∇a∇bKab

)

− n2λ(λ− 1)

(n− 2)(n+ 1)
RicabK

ab +
2n2λ(1− λ)

(n− 2)(n− 1)(n+ 1)(n+ 2)
Sc
(
gabK

ab
)
.

Since λ0 + µ0 = 1 we deduce that Qλ0,λ0(K) = Qµ0,µ0(K). In consequence, the equality
[∆Y ,Qλ0,λ0(K)] = 0 is equivalent to the fact that Qλ0,λ0(K) is a conformal symmetry of ∆Y .
By Corollary 4.7, this means that Obs(K) = 0. �
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As a straightforward consequence, we get

Corollary 4.10. Let (M, g) be a conformally flat manifold and K be a Killing 2-tensor. Then,
we have [Qλ0,λ0(K),∆Y ] = 0.

This corollary enlights some of the results obtained in [2]. As for conformal symmetries, we
provide a full description of the symmetries of ∆Y given by second order differential operators.

Theorem 4.11. The second order symmetries of ∆Y are exactly the operators

Qλ0,λ0(K +X) + f,

where X is a Killing vector field, K is a Killing 2-tensor such that Obs(K)[ is an exact one-form
and f ∈ C∞(M) is defined up to a constant by Obs(K)[ = −2df .

Proof. Let D1 be a second order symmetry of ∆Y . In view of (2.5), we can deduce from
[∆Y , D1] = 0 that {H,σ2(D1)} = 0. This means that K = σ2(D1) has to be a symmetric Killing
2-tensor. Since quantization maps are bijective, the operator D1 reads as

D1 = Qλ0,λ0(K +X + f),

with f and X symbols of degree 0 and 1 respectively. Theorem 4.5 implies that

[∆Y , D1] = Qλ0,µ0(2G(X) + Obs(K) + 2G(f))

+
(
Qµ0,µ0(K +X + f)−Qλ0,λ0(K +X + f)

)
◦∆Y .

We have shown that Qµ0,µ0(K) = Qλ0,λ0(K) in Proposition 4.9. Moreover, the general formulas
in Theorem 2.4 prove that Qµ0,µ0(f) = Qλ0,λ0(f) and Qµ0,µ0(X)−Qλ0,λ0(X) = 2

n∇aXa. Hence,
we get

[∆Y , D1] = Qλ0,µ0(2G(X)) +
2

n
(∇aXa)∆Y +Qλ0,µ0(Obs(K) + 2G(f))

and

σ2([∆Y , D1]) = 2G(X) +
2

n
(∇aXa)H.

As S2TM = S2,0TM ⊕ S2,1TM , each of the two terms in the right hand side of the second
equation are independent. Therefore, [∆Y , D1] = 0 is equivalent to G(X) = 0, ∇aXa = 0 and
Obs(K) + 2G(f) = 0. The equations G(X) = 0 and ∇aXa = 0 mean that X is a conformal
Killing vector field with vanishing divergence, i.e. X is a Killing vector field. Applying the met-
ric, the equation Obs(K)+2G(f) = 0 translates into Obs(K)[ = −2df . The result follows. �

For comparison, we recall the alternative classification obtained in [3].

Theorem 4.12 ([3]). Let K be a Killing 2-tensor and put I(K)ab = Kac Ricbc−RicacKb
c . Then,

we have

[
∇aKab∇b + f,∆ + V

]
= 0 ⇐⇒ Kab(∇aV )− 1

3

(
∇bI(K)ab

)
= ∇af,

where ∆ = ∇agab∇b and f, V ∈ C∞(M).

As an advantage of our method, the obtained condition to get a symmetry (namely Obs(K)[

exact one-form) is conformally invariant and obviously vanishes on conformally flat manifolds.
As an advantage of the approach used in [3] and initiated by Carter [11], one recovers easily
that

[∆Y ,∇aKab∇b] = 0,

for all Killing 2-tensors K on an Einstein manifold.
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4.5 Higher order conformal symmetries

Up to now we discussed symbols of order ≤ 2. The more general version (which we shall
state without proof) of Theorem 4.5 is as follows. Assume that Qλ,µ is a family of natural and

conformally invariant quantizations as in Theorem 2.5 and let S be a trace-free symbol S ∈ Sk,00 .
Then we get

∆Y ◦ Qλ0,λ0(S)−Qµ0,µ0(S) ◦∆Y = Qλ0,µ0
(
2G(S) + xF1(S) + yF2(S) + Φ(S)

)
, (4.5)

where operators F1,F2 : Sk,00 → Sk−1,0
δ0

are defined in Proposition 3.2, scalars x and y have the
value

x =
k(k − 1)(n+ 2k − 6)

3(n+ 2k − 2)(n+ 2k − 3)
and y =

k(k − 1)(k − 2)(n+ 2k)

12(n+ 2k − 2)(n+ 2k − 3)
,

and Φ is a natural and conformally invariant operator Φ : Sk,00 → S≤k−3
δ0

. For k ≤ 2 this recovers
Theorem 4.5, the general case k ≥ 3 can be shown by a direct (but tedius) computation.

Using (4.5) we can formulate a higher order version of Corollary 4.7: If K ∈ Kk is a conformal
Killing k-tensor such that the operatorQλ0,λ0(K) is a conformal symmetry of ∆Y , then xF1(K)+
yF2(K) = 0. Moreover, the same reasoning as in the proof of Theorem 4.8 yields a higher order
analogue of this theorem, i.e.

Ak/Ak−1 ⊆
{
K ∈ Kk |xF1(K) + yF2(K) = G(K) for some K ∈ Sk−1,0

0

}
.

5 Examples in dimension 3

In this section, we consider the space R3 endowed successively with two types of metrics: the
conformal Stäckel metrics and the Di Pirro metrics.

The conformal Stäckel metrics are those for which the Hamilton–Jacobi equation

gij(∂iW )(∂jW ) = E

admits additive separation in an orthogonal coordinate system for E = 0 (see [8] and references
therein). They are conformally related to the Stäckel metrics, for which the additive separation
of the Hamilton–Jacobi equation holds for all E ∈ R. Moreover, the separating coordinates,
called (conformal) Stäckel coordinates are characterized by two commuting (conformal) Killing
2-tensors.

Except for the Stäckel metrics, every diagonal metric on R3 admitting a diagonal Killing
tensor is a Di Pirro metric g (see [28, p. 113]), whose corresponding Hamiltonian is (see e.g. [14])

H = g−1 =
1

2(γ(x1, x2) + c(x3))

(
a(x1, x2)p2

1 + b(x1, x2)p2
2 + p2

3

)
, (5.1)

where a, b, c and γ are arbitrary functions and (xi, pi) are canonical coordinates on T ∗R3.

5.1 An example of second order symmetry

The Di Pirro metrics defined via equation (5.1) admit diagonal Killing tensors K given by

K =
1

γ(x1, x2) + c(x3)

(
c(x3)a(x1, x2)p2

1 + c(x3)b(x1, x2)p2
2 − γ(x1, x2)p2

3

)
.

For generic functions a, b, c and γ, the vector space of Killing 2-tensors is generated by H
and K. However, for some choices of functions, this metric can admit other Killing tensors.
For example, if (r, θ) denote the polar coordinates in the plane with coordinates (x1, x2), if the
functions a, b, γ depend only on r and if a = b, then the metric is Stäckel and admits p2

θ as
additional Killing tensor.
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Proposition 5.1. On the space R3, endowed with the metric g defined by (5.1), there exists
a symmetry D of ∆Y whose principal symbol is equal to the Killing tensor K. In terms of the
conformally related metric

ĝ :=
1

2(γ(x1, x2) + c(x3))
g,

this symmetry is given by: D = Qλ0,λ0(K) + 1
16(3R̂icab − Ŝcĝab)K

ab, i.e. by:

D = ∇̂aKab∇̂b −
1

16
(∇̂a∇̂bKab)− 1

8
R̂icabK

ab,

where ∇̂, R̂ic and Ŝc represent respectively the Levi-Civita connection, the Ricci tensor and the
scalar curvature associated with the metric ĝ.

Proof. We use Theorem 4.11. In order to compute the obstruction Obs(K)[, we used a Math-
ematica package called “Riemannian Geometry and Tensor Calculus”, by Bonanos [6].

This obstruction turns out to be an exact one-form equal to d(−1
8(3R̂icab − Ŝcĝab)K

ab).
The first expression of the symmetry D follows, the second one is deduced from (4.4), giving
Qλ0,λ0(K). �

5.2 An example of obstructions to symmetries

If written in conformal Stäckel coordinates, the conformal Stäckel metrics g on R3 admit four
possible normal forms, depending on the numbers of ignorable coordinates (see [8]). A coordi-
nate x is ignorable if ∂x is a conformal Killing vector field of the metric.

Thus, if x1 is an ignorable coordinate, the conformal Stäckel metrics g read as

g = Q
(
(dx1)2 +

(
u(x2) + v(x3)

)(
(dx2)2 + (dx3)2

))
, (5.2)

where Q ∈ C∞(R3) is the conformal factor and where u and v are functions depending respec-
tively on the coordinates x2 and x3. Such metrics admit ∂x1 as conformal Killing vector field
and

K = (u(x2) + v(x3))−1
(
v(x3)p2

2 − u(x2)p2
3

)
(5.3)

as conformal Killing 2-tensor.

Proposition 5.2. On R3, there exist metrics g as in (5.2) whose conformal Laplacian ∆Y

admits no conformal symmetry with principal symbol K.

Proof. Indeed, the obstruction associated with K, Obs(K)[, is generally not closed. Thanks
to the Mathematica package “Riemannian Geometry and Tensor Calculus”, by Bonanos [6], we
can actually compute that

dObs(K)[ = −1

4

(
∂2
x2 + ∂2

x3

)
∂x2∂x3 log(u(x2) + v(x3))dx2 ∧ dx3,

where the symbol ′ denotes the derivatives with respect to the coordinates x2 and x3. This
expression does not vanish e.g. for the functions u(x2) = x2 and v(x3) = x3.

We conclude then using Theorem 4.8. �
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An example of a metric of the form (5.2) is provided by the Minkowski metric on R4 reduced
along the Killing vector field X = x3∂t + t∂x3 + a(x1∂x2 − x2∂x1), a ∈ R (see [21]). In the
time-like region of X and in appropriate coordinates (r, φ, z), the reduced metric is equal to

g = dr2 +
r2z2

z2 − a2r2
dφ2 + dz2

and admits ∂φ as Killing vector field. Moreover, after reduction, the Killing tensor p2
x1 + p2

x2 is
equal to

K = p2
r +

1

r2
p2
φ.

Notice that the metric g is a Stäckel metric with one ignorable coordinate. Indeed, the metric
takes the form (5.2), with Q(r, z) = r2z2

z2−a2r2 , u(r) = 1/r2 and v(z) = −a2/z2, whereas the

conformal Killing tensor K − z2

z2−a2r2H can be written as in (5.3). Here, H = g−1 is the metric
Hamiltonian.

In this situation, there is no conformal symmetry of ∆Y with principal symbol K if a 6= 0.
Indeed, the one-form Obs(K)[ is then non-exact, as shown by Mathematica computations

dObs(K)[ =
3

2

(
a+ a3

)( 1

(z + ar)4
− 1

(z − ar)4

)
dr ∧ dz.

Remark 5.3. Extending the metric (5.2) to Rn as

g = Q
(
(dx1)2 + (u(x2) + v(x3))

(
(dx2)2 + (dx3)2

)
+ (dx4)2 + · · ·+ (dxn)2

)
,

one can check that K, given in (5.3), is again a conformal Killing tensor and that the one-form
Obs(K)[ is in general non-exact. Thus, there is no conformal symmetry of ∆Y with principal
symbol K.
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Abstract. A regular normal parabolic geometry of type G/P on a manifold M gives rise to se-
quences Di of invariant differential operators, known as the curved version of the BGG resolution.
These sequences are constructed from the normal covariant derivative ∇ω on the corresponding
tractor bundle V, where ω is the normal Cartan connection. The first operator D0 in the sequence
is overdetermined and it is well known that ∇ω yields the prolongation of this operator in the ho-
mogeneous case M = G/P . Our first main result is the curved version of such a prolongation.
This requires a new normalization of the tractor covariant derivative on V . Moreover, we obtain an
analogue for higher operators Di . In that case one needs to modify the exterior covariant derivative
d∇

ω
by differential terms. Finally we illustrate these results with simple examples in projective,

conformal and Grassmannian geometry. Our approach is based on standard BGG techniques.

Keywords. Parabolic geometry, prolongation of invariant overdetermined PDE’s, BGG sequence,
tractor covariant derivatives

1. Introduction

The problem how to find a prolongation of an overdetermined system of PDE’s acting
between sections of vector bundles is classical and has been studied for a long time.
A systematic procedure to solve such problems was developed by D. C. Spencer (see [32])
and his coworkers. One of the tools employed by him was the Spencer resolution of the
system, which is useful for description of many properties of solutions of the system. In
particular, there is a class of systems of finite type whose solutions are determined by
a finite jet at a chosen point. Spencer found a suitable characterization of such systems
in his studies. His general results are quite useful but in specific examples, in particular
for equations arising in a geometric context, a more efficient analysis can be obtained by
employing techniques more adapted to the geometric structure.
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P, Somberg, V. Souček: Mathematical Institute, Sokolovska 83, Karlin, 180 00, Praha 8,
Czech Republic; e-mail: somberg@karlin.mff.cuni.cz, soucek@karlin.mff.cuni.cz
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Important examples of overdetermined systems can be found in many areas of geom-
etry. Examples in conformal geometry include, e.g., Killing vectors, conformal Killing
vectors, Killing–Yano forms, equations for Einstein scales, etc. (see [30, 19, 26]). In such
cases, it was possible to get much better results, because the relevant manifolds were
equipped with a rich geometric structure making it possible to use very efficient tools
coming from representation theory. To illustrate this in more detail, let us recall that the
most famous example of a resolution of an overdetermined system is the de Rham se-
quence for differential forms on a general manifold. The overdetermined system in this
case is the gradient of a function. The de Rham differentials d forming the resolution are
distinguished by their invariance with respect to the group of diffeomorphisms acting on
the manifold.

Many more explicit examples of overdetermined systems and their resolutions can
be described in cases where the manifold is equipped with a richer geometric structure.
Typical examples are manifolds with a given projective, conformal, quaternionic, or CR
structure. Homogeneous models of such structures are given by homogeneous spaces
G/P, where G is a semisimple Lie group and P a parabolic subgroup. On such spaces
there exist infinite sequences of resolutions (analogues to the de Rham resolutions), one
for each irreducible G-module. The de Rham resolution is the resolution for the trivial
G-module. A feature of such resolutions is that operators forming the sequence are (typ-
ically) higher order operators (with orders rising with the complexity of the G-module).
They are dual versions of the famous Bernstein–Gel’fand–Gel’fand resolutions of irre-
ducibleG-modules by Verma modules found in the 70’s in representation theory. Follow-
ing ideas of É. Cartan, it is possible to introduce ‘curved versions’ of such homogeneous
models known under the name of parabolic geometries (see [8]). Curved versions of such
resolutions were constructed recently in complete generality in [9, 5]. They are again
formed by invariant differential operators, but their composition is now nontrivial due to
nontrivial curvature of general curved structures.

To be more specific, let us now recall more details on parabolic geometries. Let
G be a (real) semisimple Lie group and P its parabolic subgroup. Following ideas of
É. Cartan, the homogeneous space G/P is a flat model for a curved parabolic geome-
try of type (G, P ), which is specified by a couple (G, ω), where G → M is a principal
P -bundle and ω is a Cartan connection. It is well known that such a geometry can be
characterized by an underlying geometric structure on the manifold M, together with
suitable conditions applied to the Cartan connection needed to remove ambiguities in its
definition. A key condition is a normalization condition expressed using the language
of cohomology of Lie algebras. Cartan connections satisfying this normalization condi-
tion are called normal Cartan connections. To have an equivalence of categories between
the category of parabolic structures (G, ω) on M and the underlying geometric structure
on M, it is necessary to add an additional technical condition on ω (called regularity).
Full details on this correspondence can be found in [8].

Distinguished examples of this procedure are the normal Cartan connections con-
structed for a conformal structure by É. Cartan and for a CR structure by Chern and
Moser ([10, 12]). Let us consider a regular normal parabolic geometry (G, ω) of type
(G, P ). For any G-module V, the tractor bundle V over M is (by definition) the vec-
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tor bundle associated to G and the representation V (restricted to P ). The normal Cartan
connection ω on G then induces the tractor covariant derivative ∇ω on V, which is then
used in various problems in analysis and/or geometry on M (e.g., to construct differen-
tial invariants on the corresponding parabolic geometry). For example, it plays the key
role in the construction of Bernstein–Gel’fand–Gel’fand (BGG) sequences of invariant
differential operators (see [9, 5]) and prolongation procedures for first operators in BGG
sequences (see e.g. [4]).

In particular, there is a lot of interest in the study of properties of the first opera-
tors in the BGG sequences, or their semilinear versions. Ideas behind the construction
of these operators by the BGG machinery can be helpful in such problems. The con-
struction uses tractor covariant derivatives acting on tractor bundles and suitable splitting
operators (for details, see Sect. 3). In some simple cases there is a one-to-one correspon-
dence between solutions of the first BGG equation and the kernel of the corresponding
tractor covariant derivative. In other words, the tractor covariant derivative is the pro-
longation of the first BGG operator. But such a simple correspondence is not valid in
general.

A general scheme for prolongation of the first BGG operator for parabolic geometries
with commutative nilpotent radical was introduced in [4]. The authors not only treat the
prolongation for linear overdetermined systems with a particular behavior of the symbol
but they also allow semilinear systems having the same symbol as in the linear case and
allowing general nonlinear behavior of the lower order part of the operator. A generaliza-
tion to contact cases can be found in [16] and an extension to general parabolic geometries
is discussed in [28]. The procedure used in [4] is efficient but not invariant. In quite a few
special cases (see [6, 13, 17, 15, 21, 19]), several authors found an invariant way to com-
pute a deformation of the normal tractor covariant derivative having the property that its
kernel can be identified with solutions of the first BGG sequence.

The new normalization of tractor covariant derivatives developed in this paper is moti-
vated by a wish to extend these examples to a general scheme. We shall study the problem
of a suitable normalization for tractor covariant derivatives for a general parabolic geom-
etry in a systematic way and show that there is a distinguished alternative of the usual
normalization of tractor covariant derivatives on tractor bundles giving directly a canoni-
cal prolongation of the first BGG operator in an invariant way.

The normal tractor covariant derivative is induced from the normal Cartan connection
on the principal bundle G. An important observation is that if we want to find a covariant
derivative on tractor bundles giving an invariant prolongation of the first BGG operator, it
is necessary to adapt (in contrast to ∇ω) the normalization condition to the choice of the
tractor bundle under consideration.

The main results of the paper can be described as follows. Let us consider a regular
normal parabolic geometry of type (G, P ) given by the couple (G, ω). To any irreducible
G-module V, there is associated the covariant derivative ∇ω on the associated vector
bundle V. The space of all covariant derivatives on V is the affine space modeled on
the vector space E1(EndV ). We want to find a deformation of ∇ω by 8 ∈ E1(EndV )
satisfying a new normalization condition (adapted to the choice of V) in such a way that
the resulting covariant derivative will have suitable properties.
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The deformation 8 cannot be chosen arbitrarily. Firstly, the construction of the BGG
sequence leads to the requirement of preserving the lowest homogeneous component
of ∇ω (having homogeneity zero), hence we shall restrict to 8 ∈ E1(EndV )1, where
the superscript 1 indicates that8 should have (total) homogeneity at least one. The desire
to have good properties of the new covariant derivative in the prolongation procedure for
the first BGG operator imposes further restrictions on the choice of 8. They will be ex-
pressed by properties of values of 8(s) ∈ E1(V ), where s is a section of V. This leads to
the following class of covariant derivatives on the tractor bundle V.

Definition 1.1. Let ω be the regular normal Cartan connection on the principal bundle G
and let ∇ω be the associated covariant derivative on the associated vector bundle V. The
class C of admissible covariant derivatives on V is defined by

C = {∇ = ∇ω +8 | 8 ∈ Im(∂∗V ⊗ IdV ∗), 8 ∈ E1(EndV )1},

where ∂∗V is the Kostant differential corresponding to homology of g− with values in V
(cf. [25]).

The condition 8 ∈ Im(∂∗V ⊗ IdV ∗) is equivalent to 8(s) ∈ Im ∂∗V ⊂ E1(V ) for all
s ∈ 0(V ), where 0(V ) denotes the space of sections of V.

The main theorem of the paper is then

Theorem 1.2. There exists a unique covariant derivative ∇ ∈ C such that

(∂∗V ⊗ IdV ∗)(R∇) = 0,

where R∇ ∈ E2(EndV ) is the curvature of ∇. Again, the condition (∂∗V ⊗ IdV ∗)(R∇)=0
can be equivalently expressed as ∂∗V (R

∇(s)) = 0 for all sections s of V.

The new covariant derivative ∇ constructed in Theorem 1.2 gives a prolongation of the
first BGG operator, hence we shall call the covariant derivative satisfying this new nor-
malization condition the prolongation covariant derivative. The next main result is the
theorem stating this property.

Theorem 1.3. Let us consider a parabolic geometry (G, ω) modeled on a couple (G, P ).
There is a one-to-one correspondence between the kernel of the first BGG operator for
a G-module V and the kernel of the prolongation covariant derivative on the associated
bundle V over M.

In Section 4, we extend the previous construction to other operators in the BGG sequence.
In these cases, we have to consider a more general deformation of the exterior derivative
d∇ by adding a differential term (instead of just an algebraic one, which was sufficient
for the first operator in the BGG sequence).

Finally, we compare the general procedure developed in this paper with particular
results obtained in some special cases and compute some other examples of prolongation
covariant derivatives. They come from projective and Grassmannian geometry.
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2. Normalization of tractor covariant derivatives

2.1. The double filtration on EndV

LetG be a semisimple Lie group (real or complex) and P a parabolic subgroup ofG. The
choice of P induces a grading g =

⊕k
i=−k gi on the Lie algebra of G: there is a grading

element E in g0 acting by i on gi .
Every irreducible module V for G is also graded by the action of E as follows:

V =
⊕
a∈A

Va, V∗ =
⊕
b∈A

V∗
−b,

where A is the set of all eigenvalues of E on V. A similar decomposition of g+ is given
by g+ = g1 ⊕ · · · ⊕ gk.

The representation EndV ' V⊗ V∗ has the standard ‘diagonal’ grading induced by
the action of E, given by

EndV =
⊕
`

(EndV)`, (EndV)` :=
⊕

a−b=`; a,b∈A

Va ⊗ V∗
−b.

The key point for the iterative process below is to consider the second ‘vertical’ grad-
ing on the product V ⊗ V∗ by keeping the grading on V and using the trivial grading
on V∗. Hence the vertical grading is given by

EndV =
⊕
a∈A

(EndV)a, (EndV)a := Va ⊗ V∗.

The gradings are not P -invariant. We shall hence consider filtrations induced by the
gradings above. For the diagonal grading, we shall define the filtration by

(EndV)` =
⊕
k≥`

(EndV)k.

In particular, (EndV)1 always denotes the corresponding component with respect to the
diagonal filtration.

For the vertical grading, the filtration is defined by

(EndV)a =
⊕
b≥a

(EndV)b.

The grading of g+ also gives the standard filtration gk ⊂ · · · ⊂ g1
= g+.

These filtrations (together with the filtration on g+) also induce the filtrations on the
chain spaces3j (g+)⊗EndV for the Lie algebra homology and cohomology complexes.
The differentials in the Lie algebra (co)homology of g− with values in g-modules W
are the maps ∂W : 3j (g+) ⊗ W → 3j+1(g+) ⊗ W, resp. ∂∗W : 3j (g+) ⊗ W →

3j−1(g+) ⊗ W. If W = EndV ' V ⊗ V∗ for a g-module V, we shall denote the
operators ∂V⊗ IdV∗ , resp. ∂∗V⊗ IdV∗ , simply by ∂V, resp. ∂∗V. This should not lead to any
confusion.
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The definition of ∂V and ∂∗V implies immediately that they preserve both the vertical
and diagonal gradings on3j (g+)⊗EndV. Hence they respect both vertical and diagonal
filtrations on 3j (g+) ⊗ EndV. Below we shall use the induced operators between the
graded bundles associated to the vertical filtration and we shall denote them by gr ∂V,
resp. gr ∂∗V.

2.2. Induced operators on associated graded bundles

The spaces of j -forms on M with values in a bundle W will be denoted by Ej (W).
They are isomorphic to the bundle induced by the P -module3j (g+)⊗W. Similarly, the
tangent bundle is isomorphic to the bundle associated to the P -module g/p. All filtra-
tions mentioned above are P -invariant and so they induce the corresponding filtrations on
Ej (EndV ).We shall need, in particular, the diagonal filtrations Ej (EndV )`, resp. the ver-
tical filtration Ej (EndV )a, induced on Ej (EndV ). We shall denote by gr`(Ej (EndV )),
resp. gra(Ej (EndV )) the associated graded bundles.

The operators gr ∂∗V and gr ∂V are P -equivariant, hence they induce well defined
maps ∂∗V , resp. ∂V , between the corresponding associated graded bundles.

We shall denote by gr ∂V , resp. gr ∂∗V , the direct sum of all maps gra ∂V , resp. gra ∂
∗

V ,
acting on the direct sum gr Ej (EndV ) :=

⊕
a gra(Ej (EndV )). The operators gr ∂V and

gr ∂∗V then have the usual properties of the Kostant differentials. In particular, they are
dual to each other (with respect to a suitable scalar product), which implies the usual
properties of their kernels and images (Hodge decomposition).

Note also that Ej (V ) ⊗ V ∗ = Ej (EndV ). Hence the standard filtration on Ej (V )
is transferred (by the tensor product with V ∗) to the vertical grading on Ej (EndV ). As
an immediate corollary, ϕ ∈ Ej (EndV )a if and only if ϕs ∈ Ej (V )a for all sections
s ∈ E0(V ).

2.3. A choice of normalization

Let us consider a regular parabolic geometry (G, ω) overM with the homogeneous model
given by a couple (G, P ). For an irreducible G-module V, we shall consider the associ-
ated tractor bundle V on M. The curvature κ of the Cartan connection ω is a two-form
with values in the adjoint tractor bundle A ' G ×P g. The usual normalization condition
for ω, expressed in terms of the Kostant differential ∂∗ corresponding to homology of g−
with values in g, requires the curvature κ to be ∂∗-closed. In terms of the associated co-
variant derivative ∇ω on V, the curvature R∇

ω
of ∇ω is a two-form with values in EndV

and the normalization condition can be expressed using the Kostant differential ∂∗ for
EndV as

∂∗(R∇
ω

) = 0.

Given a choice of the bundle V, we are going to change the normalization condition
for a covariant derivative ∇ on V. Let IdV ∗ denote the identity map on V ∗. As above in
the algebraic version, we shall consider the operators

∂V ⊗ IdV ∗ , ∂∗V ⊗ IdV ∗
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acting on Ej (EndV ), forms with values in EndV ' V ⊗ V ∗. Abusing the notation, we
shall denote them by ∂V , resp. ∂∗V . It will always be clear whether the differentials act on
forms with values in V or forms with values in EndV.

We shall now introduce a new normalization for covariant derivatives on V.

Definition 2.1. We shall call a covariant derivative ∇ ∈ C the prolongation covariant
derivative if

∂∗V (R
∇) = 0,

where R∇ ∈ E2(EndV ) is the curvature of ∇.

The choice of the name should suggest that the new normalization condition gives
better properties to ∇ in the prolongation procedure for the first operator in the BGG
sequence corresponding to the representation V.

We shall need the following property.

Lemma 2.2. If ϕ ∈ E1(EndV )a and τ ∈ E1(V ), then

ϕ ∧ τ ∈ E2(V )a+1.

Proof. Indeed, we can decompose ϕ into homogeneous components

ϕ =
∑
j

αj ⊗ vj ⊗ wj , αj ∈ E1, vj ∈ V, wj ∈ V
∗,

where the sum of the homogeneities of αj and vj is greater than or equal to a. If we also
decompose τ as

τ =
∑
k

βk ⊗ uk, βk ∈ E1, uk ∈ V,

then the expression
ϕ ∧ τ =

∑
j,k

wj (uk)αj ∧ βk ⊗ vj

clearly has summands of homogeneity greater than or equal to a + 1. ut

2.4. The main lemma

The key information for the normalization procedure is the following fact concerning the
induced change of curvature.

Lemma 2.3. Let ∇1, resp. ∇2, be two covariant derivatives from C related to each other
by the deformation8 = ∇2−∇1 ∈ E1(EndV )1 and let R1, resp. R2, be the correspond-
ing curvatures. If 8 ∈ E1(EndV )a, then R2 − R1 ∈ E2(EndV )a and

gra(R2 − R1) = (gra ∂V )(gra 8).
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Proof. Let ω be the normal Cartan connection for the chosen parabolic geometry and ∇
the associated covariant derivative. It is well known that ∇ and d∇ preserve the standard
filtration on Ej (V ) and that the corresponding graded version of ∇, resp. d∇ , is equal to
gr ∂V . A shift of ∇ by 8 ∈ E1(EndV )1 does not change this property, the same being
true for d∇+8.

The change in curvature is then

R2 − R1 = d
∇8+ [8,8].

The result clearly belongs to E2(EndV )a, because the operator d∇ preserves the filtra-
tions and we can use Lemma 2.2 for the second term.

Then we get, for any s ∈ E0(V ),

gra((d
∇8+ [8,8])s) = gra((d

∇8)s) = gra(d
∇(8s)−8 ∧ (∇s))

= gra(∂V (8(s))) = (gra ∂V )(gra(8(s))). ut

2.5. Existence and uniqueness of the prolongation covariant derivative

We now show the main theorem of this article:

Theorem 2.4. For each irreducible G-module V, there exists a unique prolongation co-
variant derivative ∇ ∈ C, i.e., a unique ∇ ∈ C such that

∂∗V (R
∇) = 0. (1)

Proof. The curvature function of the regular normal connection ω for the corresponding
parabolic geometry belongs (by definition of regularity) to E2(A)1, soR∇

ω
∈E2(EndV )1,

and ∂∗V (R
∇
ω
) ∈ E1(EndV )1. Lemma 2.5 below now shows that we can start with ∇ω and

obtain by induction a unique ∇ ∈ C satisfying (1). ut

Lemma 2.5. Suppose that there is a tractor covariant derivative ∇ ∈ C with

∂∗V (R
∇) ∈ E1(EndV )1 ∩ E1(EndV )a,

where a ∈ A is such that a + 1 belongs to A. Then there exists

8 ∈ E1(EndV )1 ∩ E1(EndV )a ∩ Im(∂∗V ⊗ IdV ∗)

such that for ∇̃ = ∇ +8, one has

∂∗V (R
∇̃) ∈ E1(EndV )1 ∩ E1(EndV )a+1. (2)

Moreover, 8 is unique up to terms of homogeneity a + 1. In particular, ∇̃ ∈ C satisfy-
ing (2) is unique up to modifications by elements in

E1(EndV )1 ∩ Im(∂∗V ⊗ IdV ∗) ∩ E1(EndV )a+1.
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Proof. The spaces {E1(EndV )1 ∩ E1(EndV )a}ra=0 give a descending filtration of
E1(EndV )1. The filtration is preserved by the maps ∂V and ∂∗V , hence they induce maps
on the associated graded bundle (for simplicity we denote them by the same symbols
as for the full filtration of E1(EndV )). The standard Kostant decomposition says that
Ker gr ∂∗V and Im gr ∂V are complementary subspaces of the graded bundle gr E1(EndV )1.
In particular, gr ∂∗V restricts to an isomorphism of Im gr ∂V and Im gr ∂∗V .

Hence we can define ϕ ∈ gra(E1(EndV )1) by

ϕ := �−1∂∗V (R
∇̃),

which then has the property that

(gr ∂∗V )((gr ∂V )(ϕ)) = gra(∂
∗

V (R
∇)).

Let8 ∈ E1(EndV )1 ∩ E1(EndV )a ∩ Im(∂∗V ⊗ IdV ∗) be a preimage of ϕ. Then we define
a corrected covariant derivative by ∇̃ := ∇ −8.

Due to Lemma 2.3, we get

gra(∂
∗

V (R
∇̃)) = gra(∂

∗

V (R
∇))− (gr ∂∗V )(gra(R

∇
− R∇̃))

= gra(∂
∗

V (R
∇))− (gr ∂∗V )((gr ∂V )(gra(8))) = 0.

Hence ∇̃ has the required properties.
For the uniqueness up to terms of homogeneity higher than a, assume that we have

another 8′ ∈ E1(EndV )1 ∩ E1(EndV )a ∩ Im(∂∗V ⊗ IdV ∗) such that ∇̃ ′ = ∇ + 8′ sat-

isfies ∂∗V (R
∇̃
′

) ∈ E1(EndV )a+1. Then 8′ − 8 belongs to E1(EndV )1 ∩ Im ∂∗V , and by

assumption gra(R
∇̃
′

− R∇̃) lies in the kernel of gr ∂∗V . By Lemma 2.3, we have

gra(R
∇̃
′

− R∇̃) = (gr ∂V )(gra(8
′
−8)).

But Ker gr ∂∗V ∩Im gr ∂V is trivial, hence gra(R
∇̃
′

−R∇̃) = 0. Thus gra(8
′
−8) lies in the

kernel of gr ∂V , and also in the image of gr ∂∗V , by assumption. Hence gra(8
′
−8) = 0,

and thus

∇̃
′
− ∇̃

′
= 8′ −8 ∈ E1(EndV )a+1. ut

Remark. The construction of ∇ as outlined above depends at first on some choices (e.g.,
the choice of the preimage8 of ϕ). However, the uniqueness of the prolongation covariant
derivative shows that the result of the construction is independent of all choices. Hence the
prolongation covariant derivative is invariant—it only depends on the data of the chosen
parabolic structure and the bundle V .
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3. Prolongation of the first BGG operator

The BGG complexes are sequences of invariant differential operators on a homogeneous
model for a given parabolic geometry. A curved version of them, i.e., an extension of
operators in the sequence to invariant differential operators on general (nonflat) mani-
folds with a given parabolic structure, was first constructed in [9] and the construction
was simplified and extended in [5]. The first operator in such a sequence always gives
an overdetermined system of invariant differential equations. A prolongation of this op-
erator for the case of 1-graded parabolic geometries was constructed in [4]. However, the
methods used there needed a choice of a Weyl structure, hence the resulting covariant
derivative was not invariant. We are now going to show that the normalization of trac-
tor covariant derivatives described in this paper can be used to obtain invariant (natural)
prolongations.

We begin by introducing the setting and basic operators of the BGG machinery in a
generalized version needed for the next section. Let V be a tractor bundle over M with a
covariant derivative ∇ and the exterior covariant derivative d∇ : Ek(V )→ Ek+1(V ). Re-
call from the above that we have a well defined differential ∂∗ = ∂∗V : Ek+1(V )→ Ek(V ).
The property ∂∗ ◦ ∂∗ = 0 allows us to define the cohomology Hk as the vector bundle
quotient Hk = Ker ∂∗/Im ∂∗, where Ker ∂∗ ⊂ Ek(V ) is the space of cycles and
Im ∂∗ ⊂ Ek(V ) is the space of boundaries. The canonical surjection Ker ∂∗V ⊂ Ek(V )
→ Hk will be denoted by 5k .

Due to regularity of the parabolic geometry under consideration, the operators d∇ are
homogeneous of degree zero with respect to the natural filtration of the spaces Ek(V ) and
they induce the algebraic differential gr ∂V : gr(Ek(V ))→ gr(Ek+1(V )) on the associated
graded spaces. Thus it is possible to regard d∇ as a natural lift of gr ∂V to a differential
operator from Ek(V ) to Ek+1(V ).

The main ingredients in the BGG machinery are the differential splitting operators
Lk : Hk → Ker ∂∗V ⊂ Ek(V ) with the property ∂∗ ◦ d∇ ◦ Lk = 0. This allows one to
define the BGG operators Dk : Hk → Hk+1 in the obvious way: Dk := 5k ◦ d∇ ◦ Lk .
The definition is encoded in the diagram

Ek(V ) d∇ // Ek+1(V )

Ker ∂∗

i

OO

Ker ∂∗

i

OO

5k+1
��

Hk

Lk

OO

Dk // Hk+1

(3)

where i denotes inclusion.
We shall introduce the construction of the splitting operators in a more general situ-

ation, where the exterior covariant derivatives d∇ on Ek(V ) will be replaced by general
differential operators Ek with suitable properties (see the theorem below). The opera-
tors Dk are defined by the same construction as the BGG operators and they depend, in
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general, on the choice of Ek. The theorem below shows that for certain classes of opera-
tors Ek, the resulting operators Lk and Dk do not change.

Theorem 3.1. Let (Ek(V ))j denote the filtration on Ek(V ) and let gr(Ek(V )) denote the
associated graded bundle, and similarly for Ek+1(V ). Let Ek be a filtration preserving
differential operator from Ek(V ) to Ek+1(V ) with the property that the associated graded
map coincides with gr ∂. Then for every σ ∈ Hk, there exists a unique element s ∈ Ker ∂∗

with the following properties:

(1) 5k(s) = σ,
(2) Ek(s) ∈ Ker ∂∗.

Moreover, the mapping Lk defined by σ 7→ Lk(σ ) := s is given by a differential operator.
The corresponding operator Dk is then defined by

Dk := 5k+1 ◦ Ek ◦ Lk : Hk → Hk+1.

Suppose that we change the operator Ek to Ẽk = Ek + 8k, where 8k : Ek(V ) →
Ek+1(V ) is a differential operator with values in Im ∂∗ and preserving the filtration, with
the property that the associated graded map is trivial. Then the construction does not
change the splitting operator Lk and the operator Dk.

Proof. The first part of the proof follows the standard line of argument. The operator
∂∗ ◦ Ek acts on Ek(V ) and it preserves Im ∂∗. It preserves the filtration and its graded
version is, by assumption, given by gr(∂∗)◦gr(∂),which is invertible on Im ∂∗.Hence also
∂∗ ◦ Ek is invertible on Im ∂∗ and it is possible to show that its inverse Q is a differential
operator.

We can then define a differential operator L̂k := Id − Q ◦ ∂∗ ◦ Ek, which restricts
to zero on Im ∂∗. Hence it induces a well-defined differential operator Lk from Hk to
Ker ∂∗ ⊂ Ek(V ). It is easy to check that the operator Lk has the properties

ImLk ⊂ Ker ∂∗, 5k ◦ Lk = Id, ∂∗ ◦ Ek ◦ Lk = 0.

To show that Lk is uniquely characterized by these properties, let us consider s1, s2 ∈
Ker ∂∗ such that Ek(si) ∈ Ker ∂∗, i = 1, 2, and 5k(s1) = 5k(s2). Then the difference
s = s1 − s2 belongs to Im ∂∗. By definition of L̂k, the relation ∂∗ ◦ Ek(s) = 0 implies
L̂k(s) = s. On the other hand, L̂k is trivial on Im ∂∗. Hence L̂k(s) = 0.

To prove the last statement of the theorem, we shall consider a section s of Ek(V ). The
new operator Ẽk preserves the filtration and the induced graded map is still gr ∂. Since
(Ẽk − Ek)s belongs to Im ∂∗V , one has Ẽk(s) ∈ Ker ∂∗V iff Ek(s) ∈ Ker ∂∗V , which shows
that L̃k = Lk . Thus, for σ ∈ Hk , one has (ẼkL̃k − EkLk)σ ∈ Im ∂∗V , but this lies in the
kernel of the projection 5k+1 : Ker ∂∗→ Hk+1. ut

Now we want to discuss the relation between KerEk and KerDk. For that, we have to
consider two consecutive operators Ek and Ek+1 at the same time. They define two split-
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ting operators Lk and Lk+1. We get in this way the diagram

Ek(V ) Ek // Ek+1(V )

Hk

Lk

OO

Dk // Hk+1

Lk+1

OO
(4)

which, in general, does not commute but there is a convenient criterion for its commuta-
tivity.

Theorem 3.2. The diagram (4) commutes if and only if ∂∗ ◦ Ek+1 ◦ Ek(s) = 0 for all
sections s ∈ ImLk ⊂ Ek(V ).
Proof. The values ofLk are uniquely characterized by the conditionsLk(σ ) ∈ Ker ∂∗ and
Ek◦Lk(σ ) ∈ Ker ∂∗. Similarly, the values ofLk+1 are characterized byLk+1(τ ) ∈ Ker ∂∗

andEk+1◦Lk+1(τ ) ∈ Ker ∂∗.HenceEk ◦Lk(σ ) = Lk+1◦Dk(σ ) iffEk+1◦Ek ◦Lk(σ ) ∈

Ker ∂∗ for all σ ∈ Hk. ut

If the diagram above is commutative, we immediately get a one-to-one correspondence
between KerEk ∩ Ker ∂∗ and KerDk.

Theorem 3.3. Suppose that the diagram (4) commutes. Then 5k and Lk restrict to in-
verse isomorphisms between KerEk ∩ Ker ∂∗ and KerDk .

Proof. Let s be in KerEk∩Ker ∂∗. Then s = Lk(5k(s)) by definition ofLk, and5k(s) ∈
KerDk by definition of Dk.

On the other hand, ifDk(σ ) = 0, then commutativity of the diagram implies that also

Lk+1 ◦Dk(σ ) = Ek ◦ Lk(σ ) = 0,

hence Lk(σ ) ∈ KerEk ∩ Ker ∂∗.
And by definition of Lk, we have 5k ◦ Lk = Id . ut

Now we can return to the properties of the prolongation covariant derivative ∇ on V.
Using the above claims in the special case of the first square and the operators E0 = ∇

and E1 = d∇ , we see immediately that E1 ◦ E0 = R∇ . Hence we get the following
corollary.

Corollary 3.1. Consider a tractor bundle V and the corresponding prolongation covari-
ant derivative ∇. Set E0 = ∇ and E1 = d∇ . Then the square constructed using these
two operators commutes and the covariant derivative ∇ gives a prolongation of the first
BGG operator D0. In particular, the splitting operator L0 induces a one-to-one corre-
spondence between the space of parallel sections of V with respect to ∇ and the kernel
of the first BGG operator D0.

Remark. In the case of a 1-graded geometry, it was shown in [4] that the map L0 :
H0 → V induces an isomorphism of J kH0 with V≤k for every k such that the homol-
ogy of H1(g−,V) sits in homogeneity > k. Thus, for every operator D̃0 : H0 → H1
which differs from the standard BGG operator D0 by a linear differential operator of
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order ≤ k, there is a map 9 ∈ E1(EndV ) with values in Ker ∂∗V whose induced first
BGG operator coincides with D̃0. The mapping 9 is unique up to maps in E1(EndV )
with values in Im ∂∗V , and it is thus easy to see that the resulting normalized connection
∇̃ = ∇ +9 +8 does not depend on the choice of 9. Thus, natural deformations of D0
of low enough order can be prolonged naturally as well. We remark that a similar proce-
dure works in the case of general graded parabolic geometries, where one has to use the
filtration of the manifold for a suitable version of jet bundles (cf. [27, 28]).

4. Prolongation covariant derivatives for the whole BGG sequence

In this section we shall treat the problem considered above in the case of other squares
of the BGG sequence. We want to deform the exterior covariant derivative d∇ on k-
forms in such a way that all squares in the generalized BGG construction will commute,
and, at the same time, the BGG operators Dk will not change. In fact, we shall succeed
in keeping both the BGG operators Dk and the splitting operators Lk unchanged. The
deformation of d∇ on Ek(V ) will have, however, a different character. It will be of the
form Ek := d∇ + 8k, where 8k is a linear differential operator mapping Ek(V ) to
Ek+1(V ). Hence the deformation 8k will not, in general, be algebraic. Necessary tools
were already prepared in the previous section (Theorems 3.1–3.3). Methods described in
this section can also be applied to the first square but they give a different answer (and
also in this case the deformation 80 will not be algebraic in general).

To describe allowed deformations of the exterior derivative d∇ , we shall intro-
duce the following notation. There are two different filtrations on the space A :=
Hom(Ek(V ), Ek+1(V )). The diagonal filtration Aj is induced by the standard filtration
on Ek(V ), which is defined by the condition 8(s) ∈ Ek+1(V )a+j for all s ∈ Ek(V )a .
The other (vertical) filtration Aa is defined by the condition 8(s) ∈ Ek+1(V )a for all
s ∈ Ek(V ). In this section, we shall use the symbols ∂ and ∂∗ for the Kostant differentials
associated to the spaces Ek(V ). Recall that the class C of admissible covariant derivatives
on V was defined by

C = {∇ = ∇ω +8 | 8 ∈ Im(∂∗V ⊗ IdV ∗), 8 ∈ E1(EndV )1}.

We shall consider the following spaces Ck of deformations.

Definition 4.1. The space of allowed deformations will be defined by

Ck := {Ek ∈ Hom(Ek(V ), Ek+1(V )) | Ek = d
∇
+8, 8 ∈ A1, Im8 ⊂ Im ∂∗}.

Theorem 4.2. (1) Let ∇ be any covariant derivative from C. Let us consider the BGG
sequence with the splitting operators Lk and the BGG operators Dk induced (via
Theorem 3.1) by the operators Ek = d∇ ,

Ek(V ) d∇ // Ek+1(V )

Hk

Lk

OO

Dk // Hk+1

Lk+1

OO
(5)
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Then there exists a collection of differential operators 8k ∈ Ck such that ∂∗ ◦ d∇ ◦
(d∇ +8k) = 0. Moreover, the collection 8k with these properties is unique.

(2) As a consequence, the diagrams

Ek(V ) d
∇
+8k// Ek+1(V )

Hk(V )

Lk

OO

Dk // Hk+1(V )

Lk+1

OO
(6)

commute for all k = 0, 1, . . . , n − 1. Moreover, if ∇ depends only on data of the
chosen parabolic geometry, the same is true for the operators Ek = d∇ +8k.

Proof. Let us choose k = 0, . . . , n−1 and consider the square (6) in the generalized BGG
sequence constructed using operators d∇ ,where ∇ is any covariant derivative from C.We
shall first prove the first assertion of the theorem.

The spaces {A1
∩ Aa}ra=0 form a decreasing filtration of the space A1 with a =

0, . . . , r. The filtration is preserved by the maps ∂V and ∂∗V , hence they induce maps on
the associated graded bundle (we denote them for simplicity by the same symbols as
for the full filtration of A). We can consider the Kostant Laplacian � = gr ∂∗V gr ∂V +
gr ∂V gr ∂∗V . The standard Kostant decomposition says that Ker�, Im gr ∂∗V and Im gr ∂V
are complementary subspaces of the graded bundle gr E i(V )1. In particular, � is invertible
on Im gr ∂∗V .

Let us consider two consecutive squares with operators Ek = d∇ and Ek+1 = d∇ .
We know that the operator G := ∂∗ ◦Ek+1 ◦Ek belongs to A1 and that the k-th square is
commutative iff G = 0. If it is not the case, we shall consider the maximal index a = 0
with the property that G ∈ Aa .

The map8(1) = −�−1 gr(G) can be lifted to a linear algebraic map8(1) : Ek(V )→
Ek+1(V ) (e.g., by choosing a Weyl structure) and we shall define the first iteration E(1)k =
d∇ + 8(1). Note that the lowest homogeneous component of E(1)k remains to be ∂V and
that the image of E(1)k is a subset of Im ∂∗.

Since

Ek+1 ◦ E
(1)
k − Ek+1 ◦ Ek = d

∇
◦8(1),

we get

gra(∂
∗
◦ Ek+1 ◦ E

(1)
k )) = gra(G+ ∂

∗
◦ d∇ ◦8(1))

= gra(G)− (gr ∂∗)(gr ∂V )(�−1(gra(G))) = 0.

Hence the first order differential operator G(1) := ∂∗ ◦ Ek+1 ◦ E
(1)
k belongs to Aa+1.

The same procedure will be repeated inductively. If we define

8(2) = −(gr ∂∗)�−1 gra+1(G
(1))
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we can again lift this first order differential operator to a first order differential operator
8(2) : Ek(V )→ Ek+1(V ) and we can define the next iteration by

E
(2)
k := E(1)k +8

(2).

Then we get

gra(∂
∗

V ◦ d
∇
◦ E

(2)
k )) = gra(G

(1)
+ ∂∗V ◦ d

∇
◦8(2))

= gra(G
(1))− (gr ∂∗V )(gr ∂V )(�−1(gra(G

(1)))) = 0.

Hence the first order differential operator G(2) := ∂∗V ◦ d
∇
◦ E

(2)
k belongs to Aa+2.

It is clear that after a finite number of iterations, we shall get the existence part of the
theorem.

The proof of the uniqueness part is similar to the procedure employed in Lemma 2.5.
Suppose that we have two differential operators 8′k and 8′′k satisfying the conditions of
the theorem. Their difference 8 = 8′k − 8

′′

k satisfies ∂∗V (d
∇
◦ 8) = 0. To show that

8 = 0, suppose that 8 is nontrivial and consider the largest a such that 8a is nontrivial.
Then we know that gra(d

∇
◦ 8) = (gr ∂V )(gra 8), hence (gr ∂V )(gra 8) is at the same

time in Im gr ∂V and Ker gr ∂∗V , so it is 0. By definition, gra 8 also belongs to Im ∂∗V ,

hence gra 8 is trivial and we have a contradiction.
As for the second part of the theorem, let us consider two consecutive squares in

the BGG construction induced by Ek = d∇ , containing the operators Dk and Dk+1. If
8k is the deformation constructed above, then the replacement of Ek = d∇ by Ẽk =
d∇ + 8k leads to the same splitting operator Lk. Hence by the first part of the theorem,
the k-th diagram commutes. Note that changing the next operator Ek+1 will not change
the splitting operator Lk+1, hence the commutativity of the k-th diagram is preserved.

Finally, during the construction there were several choices made but due to the unique-
ness of the result, the construction depends only on the data of the chosen parabolic ge-
ometry. The same is true for the covariant derivative ∇. ut

5. Examples

In this section we want to illustrate the general results presented above by explicit ex-
amples showing the form of the prolongation covariant derivative in some simple situa-
tions. A more comprehensive set of examples is given in [24].

To calculate the prolongation covariant derivative of the first BGG operator D0 for
some tractor bundle V = G×P V,we employ the theory of Weyl structures [7], [8]. All of
our examples below will be |1|-graded parabolic geometries, g = g−1⊕g0⊕g1. Modding
out P+ ∼= g1 of the parabolic structure bundle G, one obtains G0 := G/P+, which is a
G0-principal bundle overM . A splitting σ : G0 → G of the canonical projection G → G0
is called a Weyl structure, and for our geometric structures below this can be identified
with the choice of a Weyl connection, which is a linear connection D compatible with the
geometry. Under such a choice, all P -associated bundles reduce toG0-associated bundles,
and in particular one gets a decomposition of every tractor bundle V which depends on
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the choice of the Weyl structure [8]. In particular, the adjoint tractor bundleAM = G×P g
decomposes into A−M ⊕A0M ⊕A1M , with A−M ∼= TM and A+M ∼= T ∗M . The Lie
algebraic action of g on V gives rise to an action • of AM on V , which we can restrict to
TM and T ∗M . The tractor covariant derivative ∇ω can be written as ∇ω = ∂ +D + P•:
the map ∂ : V → �1(M, V ) is obtained by the action of TM ↪→ AM on V , and
P• : V → �1(M, V ) is induced by the action of the second slot of the (generalized)
Schouten tensor P ∈ Eab ofD, which will be symmetric for our choices ofD. Recall that
this decomposition of ∇ω depends on the choice of the Weyl structure σ : G0 → G resp.
Weyl connection D.

In our explicit formulas, we employ abstract index notation [29]: Ea = �1(M),
Ea = X(M), and multiple indices indicate tensor products. Round brackets denote sym-
metrizations of the indices enclosed, and square brackets denote skew symmetrizations.
A subscript zero indicates taking the trace-free part.

We now prolong an interesting equation in projective geometry which has already
been treated in [17] by different methods. Next we consider three well known overde-
termined equations in conformal geometry, which govern Einstein rescalings, conformal
Killing forms and twistor spinors. Finally we analyse an equation for Grassmannian struc-
tures of type (2, q), q > 2. For a more detailed exposition of explicit calculations cf.
[22]–[24].

5.1. An example in projective geometry

Let M be an orientable manifold of dimension n endowed with a projective class of
linear, torsion-free connections [D]; here D and D′ are projectively equivalent if there is
a ϒ ∈ E1 such that

D′aωb = Daω − ϒaωb − ϒbωa

(see e.g. [14]). For simplicity, we will assume that our chosen representatives D ∈ [D]
preserve a volume form on TM .

To define projectively invariant operators we need to employ densities, which are
sections of line bundles E[w], w ∈ R, associated to the full GL(n)-frame bundle of TM
via the 1-dimensional representation

C ∈ GL(n) 7→ |detC|w(n+1)/n
∈ R+.

With this parametrization, sections of the bundles E[w] are often called projective densi-
ties. Assume n ≥ 2. We are going to prolong the following projectively invariant operator,
which is written down with respect to a D ∈ [D], but does not depend on this choice:

D0 : E (ab)[−2]→ E (ab)c 0[−2], σ ab 7→ Dcσ
ab
−

1
n+ 1

δ(ac Dpσ
b)p. (7)

D0 projects the Levi-Civita derivative of a symmetric two-tensor σ to its trace-free part.
This operator was discussed in [17], where M. Eastwood and V. Matveev showed that this
equation governs the metrizability of a projective class of covariant derivatives.
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5.1.1. The projective structure as a parabolic geometry. It is a classical result that
(M, [D]) is equivalent to a unique Cartan geometry (0, ω) of type (G, P ) =

(SL(n+ 1), P ) with P the stabilizer of a ray in Rn+1 (cf. [11, 31, 8]).
The Lie algebra g = sl(n+ 1) is 1-graded, g = g−1⊕ g0⊕ g1 = Rn⊕ gl(n)⊕ (Rn)∗,

where an element X⊕ (α id+A)⊕ϕ ∈ g for α ∈ R, A ∈ sl(n) corresponds to the matrix(
−α n

n+1 −ϕ

X 1
n+1αIn + A

)
.

The actions of g0 = gl(n) ⊂ g on g−1 = Rn and g1 = (Rn)∗ are the standard representa-
tion and its dual.

The curvature of the Cartan connection form ω can be regarded as an element of
E2(AM), with AM = 0 ×P g the adjoint tractor bundle, and is written

K =

(
0 −Aac1c2

0 Cc1c2
a
b

)
with A the Cotton–York tensor and C the (projectively invariant) Weyl curvature
(cf. [14]).

1-forms and vector fields include into AM as

ηa ∈ T
∗M 7→

(
0 −ηa
0 0

)
∈ AM, ξa ∈ TM 7→

(
0 0
ξ 0

)
∈ AM.

5.1.2. The operatorD0 as the first BGG operator. Let V := 0×P S2Rn+1. With respect
to a choice of a Weyl connection D ∈ [D], a section s of V can be written

[s]D =

 ρ

µa

σ ab

 ∈
V2
V1
V0

 :=

 E[−2]
Ea[−2]
E (ab)[−2]

 . (8)

We will need that on the first chain spaces the Lie algebra differentials ∂ and ∂∗ are
explicitly given by

∂

 ρ

µa

σ ab.

 =
 0
ρδc

a

δc
(aµb)

 , ∂

 ρc
µc

a

σc
ab.

 =
 0

2δ[c1
aρc2]

2δ[c1
(a1µc2]

a2)

 ,
∂∗

 ρc
µc

a

σc
ab.

 =
−2µpp

−2σppa

0

 , ∂∗

 ρc1c2

µc1c2
a

σc1c2
ab.

 =
2µcpp

2σcppa

0

 .
As bundles with structure group G0, V2, V1 and T ∗M ⊗ V2 are irreducible and are con-
tained in the image of ∂∗; T ∗M⊗V1 decomposes into the trace-free part Im ∂∗∩T ∗M⊗V1
and the trace part, which lies in the image of ∂ . The Kostant Laplacian � acts by

�

 ρc1c2

µc1c2
a

σc1c2
ab

 =
 −2nρc1c2

−(n+ 1)µc1c2
a

0
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on V , by multiplication with −2(n− 1) on T ∗M ⊗ V2 and by multiplication with −n on
the trace-free part of T ∗M⊗V1. This is all the algebraic information we need to calculate
the splitting operators and the prolongation.

The tractor covariant derivative ∇ω on V is easily calculated with the above actions
of Ea and Ea on V together with the formula ∇ω = ∂ +D + P•:

∇
ω

 ρ

µa

σ ab

 =
 Dcρ − 2Pcaµa

Dcµ
a
− 2Pcbσ ab + ρδca

Dcσ
ab
+ δc

(aµb)

 .
One calculates that the first splitting operator L0 : 0(H0)→ 0(V ) is given by

σ (ab) 7→

 1
n(n+1)DpDqσ

pq
+

1
2nPpqσ

pq

−
1
n+1Dpσ

pa

σ ab

 ,
and the composition of ∇ω ◦ L0 with the projection to the lowest slot is seen to yield the
operator D0 of (7).

5.1.3. Prolongation of D0. We calculate the action of the curvature K ∈ �2(M,AM):

Kc1c2 •

 0
0
σ ab

 =
 −2Apc1c2µ

p

−2Apc1c2σ
pa
+ C a

c1c2 pµ
p

2C (a1
c1c2 pσ

a2)p

 . (9)

Therefore we define

81

 0
0
σ ab

 :=

 0
8̄1σ

0

 := −�−1

∂∗
K •

 0
0
σ ab

 =
 0

2
n
C a
cp qσ

pq

0

 .
Now the curvature of the modified connection ∇ω + 81 is R = K• + d∇81 since
(81 ∧81)(ξ, η) vanishes. For ξ1, ξ2 ∈ X(M) and s ∈ V ,

(d∇81)s(ξ1, ξ2) = ∇ξ1(81(ξ2)s)−81(ξ2)(∇ξ1s)−∇ξ2(81(ξ1)s)+81(ξ1)(∇ξ2s)

−81([ξ1, ξ2])s. (10)

We may expand (10) and write (d∇81)s as
∗Dξ1(8̄1(ξ2)σ )− 8̄1(ξ2)(Dξ1σ)−Dξ2(8̄1(ξ1)σ )+ 8̄1(ξ1)(Dξ2σ)

−8̄1([ξ1, ξ2])σ
−8̄1(ξ2)∂ξ1ϕ + 8̄1(ξ1)∂ξ2ϕ − 8̄1(ξ2)∂ξ1µ+ 8̄1(ξ1)∂ξ2µ


∂ξ18̄1(ξ2)σ − ∂ξ28̄1(ξ1)σ

 , (11)

where we do not take care about the top component since it will vanish after an application
of ∂∗. The lowest component is simply ∂(8̄1σ) = −∂�−1∂∗(K • σ). Thus ∂∗(Rs) lies
in the top slot (i.e., in homogeneity 1). So our first adjustment had the effect of moving
the expression ∂∗(Rs) one slot up.
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The new connection ∇ω + 81 has the following terms in the middle slot of the cur-
vature R81 : From (11) we obtain the terms 2D[c181c2] and (via an application of the
algebraic Bianchi identity for C), C a

c1c2 p
µp. By (9), the contribution of K • s to the

middle slot is −2Apc1c2σ
pa
+C a

c1c2 p
µp. In total, we find that the action of the curvature

R81 is  ρ

µa

σ ab

 7→
 ∗

2
n
(D[c1C

a
c2]p q)σ

pq
− 2Apc1c2σ

pa
+ 2C a

c1c2 pµ
p

∗

 .
The entries (∗) are irrelevant: the lowest slot is by construction already in the kernel of
∂∗ and the highest slot always lies in Ker ∂∗. Now define

82

 ρ

µa

σ ab

 := −�−1∂∗

R81

 ρ

µa

σ ab

 .
Using DpC

p
c1c2 a = (n− 2)Aac1c2 and trace-freeness of C, we calculate

82

 ρ

µa

σ ab

 =
− 4

n
Apcqσ

pq

0
0


and find that 8 := 81 +82 ∈ 0(T

∗M ⊗ End(V )) is ρ

µa

σ ab

 7→ 2
n

−2Apcqσpq

C a
cp qσ

pq

0

 . (12)

Now, with R8 the curvature of ∇̃ = ∇ω +8, one has by construction ∂∗ ◦R8 = 0. Thus
∇̃ is the prolongation covariant derivative for (Dcσ ab)0 = 0.

5.2. Examples in conformal geometry

Let M be an n-manifold endowed with a conformal class [g] of (pseudo-)Riemannian
signature (p, q) metrics. The conformal structure (M, [g]) is equivalent to a reduction of
the structure group of the full frame bundle of TM to a CO(p, q) = R+×O(p, q)-bundle
G0 → M . To write down conformally invariant differential operators we will employ
conformal density bundles E[w], which are associated to the 1-dimensional CO(p, q)-
representation (α, C) ∈ CO(p, q) 7→ αw ∈ R+.

The conformal structure can be equivalently encoded as a parabolic geometry (G, ω)
of type (SO(p + 1, q + 1), P ), with P ⊂ SO(p + 1, q + 1) the stabilizer of an isotropic
ray in Rp+1,q+1 (cf. [10, 8]); the curvature of ω is an element κ ∈ E2(AM), with AM =
G×P so(p+ 1, q+ 1), and has to satisfy the normalization condition ∂∗κ = 0. Choosing
a metric g ∈ [g] yields its Levi-Civita connection D on TM , which serves as a Weyl
connection, and we make use of this to get explicit formulas for BGG operators in the
following.
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Since the necessary explicit tractor calculations for the next three equations are avail-
able in [23], and in the case of the conformal Killing form equations rather long, we just
summarize the important properties here and relate the results to our general theory.

5.2.1. Almost Einstein scales. Let now T := G ×P Rp+1,q+1 be the standard tractor
bundle of the conformal structure, which is endowed with its normal tractor covariant
derivative ∇ω. It was already observed in [1] that parallel sections of ∇ω are in one-to-
one correspondence with solutions of D0,

D0 : E[1]→ E(ab)0 [1], σ 7→ tf(DaDbσ + Pabσ), (13)

where tf takes the trace-free part. This is a conformally invariant 2nd order PDE, and
its solutions σ are Einstein rescalings or almost Einstein scales, [18]: σ is nonvanishing
on an open dense subset, and σ−2g is Einstein there. In particular, ∇ω is already the
prolongation covariant derivative of this problem: it is also easy to see directly that its
curvature R∇

ω
satisfies ∂∗V (R

∇
ω
) = 0 [23].

5.2.2. Conformal Killing forms. Let now V := 3k+1T be an exterior power of the con-
formal standard tractor bundle, which is again endowed with the normal tractor connec-
tion ∇ω. An explicit tractor computation yields

D0 : E[a1···ak][k + 1]→ Ec[a1···ak][k + 1],

σ 7→ Dcσa1···ak −D[a0σa1···ak] −
k

n− k + 1
gc[a1g

pqD|pσq|a2···ak],

which is the projection of Dσ to the highest weight component in Ec[a1···ak][k + 1]. So-
lutions of D0σ = 0 are the conformal Killing forms on M . The equations governing
conformal Killing forms were first prolonged by U. Semmelmann [30]. In [19] an invari-
ant prolongation was calculated directly. The prolongation covariant derivative ∇ for this
equation is already fairly complicated to compute explicitly, and we refer to [23, 22] for
this.

5.2.3. Twistor spinors. In the case where one has a reduction of the CO(p, q)-bundle of
(M, [g]) to a CSpin(p, q) = R+ × Spin(p, q)-bundle G0 one knows that (M, [g]) is a
conformal spin structure. This structure is then equivalently described as a Cartan geome-
try of type (Spin(p+1, q+1), P ), with P ⊂ Spin(p+1, q+1) again the stabilizer of an
isotropic ray in Rp+1,q+1. Let 1p+1,q+1 be the Spin(p+ 1, q + 1) representation, which
is decomposable in the case where p + q is even. The corresponding associated tractor
bundle is S = G ×P 1p+1,q+1. Now let 1p,q be the spin representation of Spin(p, q),
which we extend trivially to CSpin(p, q), and define S := G0 ×CSpin(p,q) 1

p,q . Then the
first BGG operator of S is

D0 : 0(S[1/2])→ 0(Ec ⊗ S[1/2]), σ → proj(Dcσ).

This is the twistor operator: it is the composition of D : 0(S) → Ec(S) with proj, the
projection to the kernel of Clifford multiplication. It is again well known [2, 3, 23] that
solutions of D0 are already in one-to-one correspondence with parallel sections of the
normal tractor covariant derivative ∇ω on the spin tractor bundle S.
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5.3. An example in Grassmannian geometry

Let q ∈ N, q > 2, and M be an oriented 2q-dimensional manifold together with a rank 2
bundle Eα and a rank q bundle Eα′ . Assume there is an isomorphism of TM with Eα⊗Eβ

′

,
which will be fixed. We say thatM together with the identification TM = Eβ

′

α is a Grass-
mannian geometry of type (2, q) if there exists a torsion-free linear connectionD on TM
which is the product of linear connections (again denoted by D) on Eα and Eβ ′ (see [20],
[8]). The class of all such connections are the Weyl connections of (M, TM ∼= Eβ

′

α ).
We are going to prolong the operator

D0 : E [α′β ′]
→ (Eγ [α′β ′]

γ ′
)0, uα

′β ′
7→ D

γ

γ ′
uα
′β ′
+

2
1− q

δ
[α′
γ ′
D
|γ

τ ′
uτ
′
|β ′]. (14)

Thus, D0(u) is the projection of Du to its trace-free part.

5.3.1. Grassmannian structures as parabolic geometries. Let G = SL(n), n = 2 + q,
and define P as the stabilizer of a two-plane in (Rn)∗. Regular, normal and torsion-free
parabolic geometries (G, ω) of type (G, P ) are Grassmannian structures. In the Cartan
picture, Eα and Eα′ are associated to the P -representations (Rp)∗, resp. Rq .

Let S be the standard tractor bundle of (G, ω), i.e., the associated bundle to the stan-
dard representation of SL(n). Via any Weyl structure D, S decomposes into Eα ⊕ Eα′ .

The curvature K ∈ E2(AM) = E2(S) of the Cartan connection is of the form

K =

(
C

ϕ
c1c2η −Apc1c2

0 C′
ϕ′

c1c2η′

)
;

this employs the (generalized) Weyl curvature components C ∈ �2(M, sl(Eα)) and C′ ∈
E2(sl(Eα′)) and the generalized Cotton–York tensor A ∈ E2(E1) (cf. [20]). Normality of
the geometry and torsion-freeness imply that any possible trace of Cγ1γ2ϕ

γ ′1γ
′

2η
, C′γ1γ2ϕ

′

γ ′1γ
′

2η
′ and

A
ϕγ1γ2
ϕ′γ ′1γ

′

2
vanishes.

5.3.2. Description of D0 as the first BGG operator. We consider the tractor bundle
V = 32S, which under a choice of a Weyl connection D decomposes according to

[V ]D = 32(Eα ⊕ Eα′) =

 E [αβ]

Eαβ ′

E [α′β ′]

 .
On the first chain spaces the Lie algebra differentials ∂ and ∂∗ are given as follows (indices
within vertical bars are not included in the skew symmetrization):

∂

 vαβwαβ
′

uα
′β ′

 =
 0
−δ

β ′

α′
vαβ

2δ
[β ′1
α′
w|α|β

′

2]

 , ∂


v
γαβ

γ ′

w
γαβ ′

γ ′

u
γα′β ′

γ ′

 =


0
2δβ

′

γ ′2
v
γ1γ2β

γ ′1
− 2δβ

′

γ ′1
v
γ2γ1β

γ ′2

2δ
[β ′1
γ ′1
w
|γ2γ1|β

′

2]
γ ′2

− 2δ
[β ′1
γ ′2
w
|γ1γ2|β

′

2]
γ ′1
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∂∗


v
γαβ

γ ′

w
γαβ ′

γ ′

u
γα′β ′

γ ′

 =
−2w[α1α2]τ ′

τ ′

u
ατ ′β ′

τ ′

0

 , ∂∗


v
γ1γ2αβ

γ ′1γ
′

2

w
γ1γ2αβ

′

γ ′1γ
′

2

u
γ1γ2α

′β ′

γ ′1γ
′

2

 =


2wγ1[αβ]τ ′

γ ′1τ
′

−u
γ1ατ

′β ′

γ ′1τ
′

0

 .
The Kostant Laplacian � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂ acts on [V ]D via

�

 vαβwαβ
′

uα
′β ′

 =
 (2q)vαβ

(q − 1)wαβ
′

0

 .
The top slot of E1(V ) is E [αβ]

c = Eγ [αβ]
γ ′

and coincides with the image of ∂∗. It is ir-
reducible and the Kostant Laplacian acts by multiplication with 2(2q − 1). The middle
slot of E1(V ), which is Eαβ

′

c , decomposes into Im ∂ , which are traces, and the trace-free
part Im ∂∗ = E0

αβ ′

c . One finds that E0
γαβ ′

γ ′
= E0

[γα]β ′

γ ′
⊕ E0

(γ α)β ′

γ ′
and � acts by q on the

alternating part and by q − 2 on the symmetric part.
The tractor covariant derivative on V is

(∇ω)
γ

γ ′

 vαβwαβ
′

uα
′β ′

 =


D
γ

γ ′
vαβ + 2Pγ [α

γ ′τ ′
wβ]τ ′

D
γ

γ ′
wαβ

′

− δα
γ ′
vγβ

′

+ P
γα

γ ′τ ′
uβ
′τ ′

D
γ

γ ′
uα
′β ′
+ 2δ[α′

γ ′
w|γ |β

′]

 .
The first BGG splitting operator L0 : E (α′β ′)→ 0(V ) is computed to be

L0(u
α′β ′) =


1

2qP
αβ

τ ′1τ
′

2
uτ
′

1τ
′

2 −
1

1−qD
[α
τ ′1
D
β]
τ ′2
uτ
′

1τ
′

2

1
1−qD

α
τ ′
uτ
′β ′

uα
′β ′

 ,
and the composition of ∇ω ◦ L0 with the projection to the lowest slot is seen to yield our
operator (14).

5.3.3. Prolongation ofD0. For a section s of V one first computesK •s ∈ E2(V ), which
is then mapped by ∂∗ into E1(V ),

∂∗

K •
 vαβwαβ

′

uα
′β ′

 =


2Cγ1[αβ]
γ ′1ϕ
′η
wηϕ

′

+ 2A[α|γ1|β]
η′ϕ′

uη
′ϕ′

−2C′γ1αβ
′

γ ′1ϕ
′η′
uϕ
′η′

0

 . (15)

The first deformation map 81 is defined by 81 = −�−1
◦ ∂∗ ◦K•,

81

 0
0

uα
′β ′

 =
 0

2
q
C′

[γ1α]β ′

γ ′1ϕ
′η′
uϕ
′η′
+

2
q−2C

′(γ1α)β
′

γ ′1ph
′η′
uϕ
′η′

0

 .
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Now we need to calculate ∂∗ of the change in curvature resulting from 81, which is just
∂∗ ◦ d∇81, since one quickly sees that ∂∗ ◦ 81[c1∂c2] = 0. Both indices of a section
wαβ

′

are contracted into C and the trace taken by ∂∗ vanishes by trace-freeness of C, C′.
Therefore we are only interested in the differential components of d∇81 given by

0
2
( 1
q
+

1
q−2

)
D
γ1
γ ′1
C′
γ2αβ

′

γ ′2ϕ
′η′
uϕ
′η′
− 2

( 1
q
−

1
q−2

)
D
γ1
γ ′1
C′
αγ2β

′

γ ′2ϕ
′η′
uϕ
′η′

− 2
( 1
q
+

1
q−2

)
D
γ2
γ ′2
C′
γ1αβ

′

γ ′1ϕ
′η′
uϕ
′η′
+ 2

( 1
q
−

1
q−2

)
D
γ2
γ ′2
C
αγ1β

′

γ ′1ϕ
′η′
uϕ
′η′

0

 .
Applying ∂∗ we obtain the top slot contribution

−4
(

1
q
+

1
q − 2

)
D

[α
τ ′
C′
|γ1|β]τ ′

γ ′1ϕ
′η′
uϕ
′η′
+ 4

(
1
q
−

1
q − 2

)
D

[α
τ ′
C
β]γ1τ

′

γ ′1ϕ
′η′
uϕ
′η′ . (16)

Adding the contributions of the top slot of (15) and (16) (after multiplication by− 1
2(2q−1) )

to the modification map 81, we obtain the full modification map

8

 vαβwαβ
′

uα
′β ′

 =


1
2q−1

(
2
( 1
q
+

1
q−2

)
D

[α
τ ′
C′
|γ1|β]τ ′

γ ′1ϕ
′η′
uϕ
′η′
− 2

( 1
q
−

1
q−2

)
D

[α
τ ′
C
β]γ1τ

′

γ ′1ϕ
′η′
uϕ
′η′

− C
γ1[αβ]
γ ′1ϕ
′η
wηϕ

′

+ A
[α|γ1|β]
η′ϕ′

uη
′ϕ′
)

2
q
C′

[γ1α]β ′

γ ′1ϕ
′η′
uϕ
′η′
+

2
q−2C

′(γ1α)β
′

γ ′1ϕ
′η′
uϕ
′η′

0

.

∇̃ = ∇
ω
+8 is then the prolongation covariant derivative of the system (D

γ

γ ′
uα
′β ′)0 = 0.

5.4. The case of infinitesimal automorphisms

Let AM be the adjoint tractor bundle of a regular parabolic geometry (G, ω) over M
and ∇ω the adjoint tractor covariant derivative. In [6] it was shown that parallel sections
of the connection

∇̃s = ∇ωs + κ(5(s), ·) (17)

are in one-to-one correspondence with infinitesimal automorphisms of (G, ω), where 5
is the natural projection 5 : AM → TM . This shows that it is of interest to consider
the first BGG operator D̃0 obtained from ∇̃. If the parabolic geometry (G, ω) is normal,
the curvature of ∇̃ lies in the kernel of ∂∗AM . Therefore, exactly as in Corollary 3.1, one
sees that 50 : AM → H0 and L̃0 : H0 → AM are inverse isomorphisms between the
space of parallel sections of ∇̃ and the kernel of D̃0. Thus, the operator D̃0 describes the
infinitesimal automorphisms of (G, ω) and is automatically prolonged by ∇̃.

It is shown that if the parabolic geometry is also torsion-free or 1-graded, one has
∂∗AMκ = 0, i.e., for every s ∈ AM one has ∂∗AMκ(5(s), ·) = 0. But in the torsion-
free case, the map ξ 7→ κ(5(s), ξ) is evidently homogeneous of degree ≥ 1. Therefore,
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if we know that H1(g−, g) sits in homogeneity ≤ 0, we see that ξ 7→ κ(5(s), ξ) lies
in Im ∂∗AM .

Thus we have:

Theorem 5.1. Let (G → M,ω) be a torsion-free, normal parabolic geometry with
H1(g−, g) concentrated in homogeneity ≤ 0. Then ∇̃ from (17) coincides with the pro-
longation covariant derivative on AM . In particular, the usual first BGG operator D0
coincides with D̃0 and thus describes infinitesimal automorphisms.

We note that the homogeneity condition onH1(g−, g) is satisfied for all parabolic geome-
tries of type (G, P ) with g simple and (G, P ) not corresponding to projective structures
or contact projective structures.
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Abstract This is the second in a series of articles on a natural modification of the normal
tractor connection on parabolic geometries, which naturally prolongs an underlying overde-
termined system of invariant differential equations. We give a short review of the general
procedure developed in Hammerl et al. (preprint) and then compute the prolongation covariant
derivatives for a number of interesting examples in projective, conformal, and Grassmannian
geometries.
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1 Introduction

In this article, we study certain overdetermined linear systems of PDEs that have a geomet-
ric origin and satisfy strong invariance properties. The goal is to rewrite these systems in a
closed form by prolongation. This is achieved by constructing an extended first order system
that is described by a covariant derivative and which has the property that parallel sections
of that covariant derivative are in one to one correspondence with solutions of the original
equation. We call this derivative the prolongation covariant derivative of the given equation.
A universal construction of this prolongation for a big class of geometric equations that will
be introduced below was obtained in [17].

The equations studied here appear naturally for parabolic geometries-like projective, con-
formal, or Grassmannian structures and include as special instances the equations describing
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the infinitesimal symmetries of geometric structures. Special examples of overdetermined
linear systems of invariant equations coming from parabolic geometries are discussed in,
e.g., [2,10,4,8,14].

The results of [2,17] provide a priori bounds for the solution spaces of the respective
equations. To obtain more subtle information, for instance by analyzing the curvature, one
needs to have formulas for the resulting prolongation covariant derivative. While the universal
procedure presented in [17] is constructive, the explicit form of the resulting prolongation
was so far only known in a small number of cases. The examples in the panorama presented
here were selected according to several criteria: they should be useful and non-elementary,
going beyond the examples scattered in the references; they should be computable by hand,
and at the same time demonstrating the powerful machine developed in [17]. The examples
treated in this article should give the interested reader the ability to recognize the complexity
of the necessary computations both in general and in specific situations of interest.

The invariant overdetermined operators that give rise to the equations studied here appear
in the Bernstein–Gelfand–Gelfand (BGG for short) sequences of natural differential oper-
ators on parabolic geometries that was constructed in [7] and later simplified in [3]. The
prolongation results of [17] make extensive use of tractor calculus for parabolic geometries,
which is also central to the description of the BGG-machinery. In the next sections we briefly
recall the basic technical facts and notations necessary for these constructions. For more
details we refer to the preceding article [17] and references therein.

Throughout the article we work in the smooth category, i.e., all manifolds, vector bundles,
and their sheaves of sections are assumed to be smooth.

1.1 The BGG sequence

Let G be a semi-simple Lie group and P ⊂ G a parabolic subgroup. A parabolic geometry
on a manifold M consists of a P-principal bundle G → M together with a Cartan connection
1-form ω ∈ Ω1(G, g), [6]. Here g denotes the Lie algebra of G. A major development in the
construction of differential invariants of parabolic structure was achieved in [3,7].

Let V be a finite dimensional G-representation. It is well known that the associated trac-
tor bundle V = G ×P V carries the canonical tractor covariant derivative ∇ induced by
the Cartan connection form ω, see, e.g., [1]. The connection extends uniquely to an exterior
covariant derivative on the spaces Ek(V ) := Ωk(M, V ) of k-forms with values in the vector
bundle V , denoted by d∇ : Ek(V ) → Ek+1(V ). All associated vector bundles are graded
with respect to the action of the grading element in the Levi factor G0 of P , see [17, Section
2.1], leading to the decomposition into homogeneous parts. The lowest homogeneous part
of d∇ is the G0-equivariant Lie algebraic differential ∂k : Ek(V ) → Ek+1(V ), termed the
Kostant differential, [18]. Its adjoint, the Kostant codifferential ∂∗

k is P-equivariant and gives
rise to a complex

Ek+1(V )
∂∗

k+1→ Ek(V ), ∂∗
k ◦ ∂∗

k+1 = 0.

There are Lie algebra cohomology bundles Hk = ker ∂∗
k / im ∂∗

k+1 due to the P-equivariant
projection

Πk : ker ∂∗
k → Hk .

The basic ingredient of the BGG-machinery are the differential BGG-splitting operators

Lk : Hk → ker ∂∗
k ,
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uniquely defined by the property that for every smooth section σ ∈ Γ (Hk) one has

∂∗
k+1(d

∇(Lk(σ ))) = 0. (1)

In particular, one can form the BGG-operators

Dk : Hk → Hk+1, Dk := Πk+1 ◦ d∇ ◦ Lk .

It will be usually clear from the context what is the appropriate value for homogeneity k of
the form which is acted upon by any of the operators, i.e., we usually omit this subscript from
the notation.

Let us briefly review the invariant prolongation procedure obtained in [17]:

1.2 Prolongation of the first BGG-operator D0

The first BGG-operator D0 associated to V is overdetermined, and our aim is the construc-
tion of invariant prolongation of the corresponding systems D0σ = 0 on σ ∈ Γ (H0). Let
us recall that the approach of [17] starts by introducing certain class of linear connections
∇V + Φ on V , which are modifications of the tractor covariant derivative ∇V . The first con-
dition on a modification map Φ ∈ E1(End V ) is that it is homogeneous of degree ≥ 1 with
respect to the natural filterations on T M and V , for which we write Φ ∈ (E1(End V ))1. This
insures that basic constructions of the BGG-machinery still work. The next condition is that
for any section s ∈ Γ (V ) we have that Φs ∈ E1(V ) has values in im ∂∗. As a consequence,
the condition (1) is preserved under the modification map Φ. The latter condition can be
rewritten as Φ ∈ Im(∂∗

V ⊗ idV ∗), thus we arrive at a class of admissible covariant derivatives

C = {∇̃ = ∇ + Φ|Φ ∈ I m (∂∗
V ⊗ idV ∗) ∩ (E1(End V ))1} .

Here ∂∗
V denotes ∂∗ acting on E1(V ) (and not on E1(End V )), and the same applies for ∂∗

V
acting on Ek(V ).

The main theorem of [17] is then

Theorem 1.1 There exists a unique covariant derivative ∇̃ ∈ C characterized by the property

(∂∗
V ⊗ idV ∗)(Ω̃) = 0,

where Ω̃ ∈ E2(V ⊗ V 	) is the curvature of ∇̃.

This implies ∇̃ ◦ L0 = L1 ◦ D0, which in turn yields

Corollary 1.2 Consider a tractor bundle V and the covariant derivative ∇̃ in Theorem 1.1.
Then ∇̃ gives a prolongation of the first BGG-operator D0 in the sense that there is an
isomorphism between ∇̃-parallel sections of V and the kernel of D0 acting on Γ (H0). This
isomorphism is given by the projection Π0 : Γ (V ) → Γ (H0) and inverted by the differential
splitting operator L0 : Γ (H0) → Γ (V ).

We therefore say that ∇̃ is the prolongation covariant derivative.
The prolongation of the first operator in the BGG sequence obtained by this theorem

can be understood as the construction of a certain commutative square related to the first
BGG-operator D0, cf. [17]. We are constructing also examples of commutative squares for
the operators Dk :
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1.3 Commutativity for all Dk

In [17] the authors also obtained the analog of ∇̃ on Ek(V ). Here d∇ gives rise to the class

Ck := {d̃k = d∇ + Φ | Φ ∈ A1, Im Φ ⊂ Im ∂∗}
where A := Hom(Ek(V ), Ek+1(V )) and A1 denotes homomorphisms homogeneous of the
degree ≥ 1. Then it turns out that there is a unique d̃k ∈ Ck such that ∂∗

V ◦ d∇ ◦ d̃k = 0. This
then implies

d̃k ◦ Lk = Lk+1 ◦ Dk,

and Πk and Lk restrict to inverse isomorphisms between Ker d̃k ∩ Ker ∂∗ and Ker Dk .

1.4 The guideline for computing examples

Here is the manual for treating particular examples, which can be used to derive the explicit
form of the prolongation covariant derivative. In practice, the normalization procedure for
the canonical tractor covariant derivative can be summarized as an algorithm based on the
following list of steps:

(1) Choose a parabolic geometry (G, P, M, ω), where G → M is a principal P-bundle on
M and ω ∈ 
1(G, g). Choose also a finite dimensional G-module V and its associated
vector bundle V , termed tractor bundle. Let us fix the two consecutive vector bundles
of k, respectively, (k + 1)-forms twisted by V .

(2) Choose a Weyl structure, so that there is a well-defined splitting of the filtered bun-
dle V into a direct sum of homogeneous components. Decompose both spaces of
k, respectively, (k + 1)-forms twisted by V with respect to G0. Then compute the
value of the Laplace-Kostant algebraic operator � associated to ∂∗ on each irreducible
G0-summand (i.e., G0-graded components associated to P-equivariant filtration) either
by evaluating the action of Casimir operator or from the definition � = ∂∗∂ + ∂∂∗.

(3) Now the procedure splits into two cases:

• The computation of the prolongation covariant derivative.
Check if (∂∗

V ⊗ idV ∗)(Ω) is trivial, where Ω is the curvature of ∇. If this is the case
the procedure ends, and we have computed the prolongation covariant derivative.
If α := (∂∗

V ⊗ idV ∗)(Ω) �= 0, take the lowest nontrivial homogeneous part α j of α

and define

Φ = −�−1α j ; ∇′ = ∇ + Φ.

Then repeat the procedure with ∇ replaced by ∇′. By construction, the lowest non-
trivial component of α in the next step will have higher degree than in the previous
step, hence the procedure will terminate in a finite number of steps (bounded by the
length of the grading of V).

• The case of the whole sequence of commuting squares.
Here we use another procedure based on the following algorithm: Consider two
consecutive squares containing the exterior covariant derivatives d∇

k : Ek(V ) →
Ek+1(V ) and d∇

k+1 : Ek+1(V ) → Ek+2(V ). First check if

(∂∗
V ⊗ idV ∗)(d∇

k+1 ◦ d∇
k )
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is trivial. If not, the first step is the same as for the construction of prolongation
covariant derivative above. Consider α := (∂∗ ⊗ idV ∗)(d∇

k+1 ◦ d∇
k ) �= 0, take the

lowest non-trivial homogeneous part α j of α and define

Φ = −�−1α j ; d ′
k = d∇

k + Φ.

If α′ := (∂∗ ⊗ idV ∗)(d∇
k ◦ d ′

k) is trivial, the procedure terminates and we define
d̃k = d ′

k . If not, take the lowest non-trivial homogeneous part α′
j ′ of α′ and define

Φ ′ = −�−1α′
j ′ ; d ′′

k = d ′
k + Φ ′.

By construction, the degree j ′ will be bigger than j, hence the procedure will ter-
minate in a finite number of steps (bounded again by the length of the grading of
V ). Note that the operators Φ that occur in this iteration are (in general) differential
operators, and their order rises by one with each iteration.

2 Notation

In this section we review the basic notation and conventions related to the results of our
article.

2.1 Forms, tensors, and tensorial actions

In order to be explicit and efficient in calculations involving bundles of possibly high rank
it is necessary to introduce some further abstract index notation. In the usual abstract index
convention one would write E[ab···c], where there are implicitly k-indices skewed over, for the
space Ek . To simplify subsequent expressions we use the following conventions: First, indi-
ces labeled with sequential superscripts that are at the same level (i.e., all contravariant or all
covariant) indicate a completely skew set of indices. Formally we set a1 · · · ak = [a1 · · · ak]
and so, for example, Ea1···ak is an alternative notation for Ek , while Ea1···ak−1 and Ea2···ak both
denote Ek−1. Next we abbreviate this notation via multi-indices: We will use the form indices

ak := a1 · · · ak = [a1 · · · ak], k ≥ 0,

ȧk := a2 · · · ak = [a2 · · · ak], k ≥ 1,

äk := a3 · · · ak = [a3 · · · ak], k ≥ 2,
...
a k := a4 · · · ak = [a4 · · · ak], k ≥ 3.

If, for example, k = 1, then ȧk simply means the index is absent, whereas if k = 1, then
ä means the term containing the index ä is absent. For example, a 3-form ϕ can have the
following possible equivalent structures of indices:

ϕa1a2a3 = ϕ[a1a2a3] = ϕa3 = ϕa1ȧ3 = ϕ[a1ȧ3] = ϕa1a2ä3 ∈ Ea3 = E3.

Note that the exterior derivative d on a k-form fa can be written as (d f )a0a = ∇a0 fa for any
torsion-free affine connection ∇.

Later on we define the standard tractor bundle denoted by E A and its dual EB . The form
index notation developed above will also be used for skew symmetric powers of these
bundles. For example, the bundle of tractor k-forms E[A1···Ak ] will be denoted by EA1···Ak

or EAk .
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The bundle of endomorphisms of E A (or EA), EE
F , clearly injects EE

F ⊆ End(T ) for
any tractor bundle T ⊆ (

⊗
E A) ⊗ (

⊗
EB). Consider γ E

F ∈ EE
F and f ∈ T . The endo-

morphism γ acts on T and we denote this action by �. That is, γ � f ∈ T . Using the abstract
tractor indices, � is given by the usual tensorial action, i.e., (γ � f )A = γ A

P f P for f A ∈ E A

and (γ � f )A = −γ P
A fP for f A ∈ EA. One then computes � on the tensor products of E A

and EB using the Leibniz rule. We further put γ � to be zero on Ea, Eb and density bundles
(which we introduce later) and, using the Leibniz rule, extend γ � to the tensor products of
T with latter three bundles. Finally we remark the action � is denoted • in [6].

2.2 The adjoint tractor bundle and the Laplace-Kostant operator

The bundle A = G ×P g is called the adjoint tractor bundle. By definition, A ⊆ E A
B ,

and more generally A ↪→ End(T ) for any tractor bundle T . We shall use � to denote
the action of sections of A on T as introduced above. Note that the curvature of the nor-
mal tractor covariant derivative ∇ is the section of Ea0a1 ⊗ A, and the curvature action is
2(d∇∇ f )a0a1 = 2∇a0∇a1 f = (Ω� f )a0a1 ∈ E[ab] ⊗ T for each f ∈ T .

We have identifications Ea ∼= G ×P p+ and Ea ∼= A/A′,A′ := G ×P p, which allow us
to define inclusions ι : Ea ↪→ A and ῑ : Ea ↪→ A/A′, where the latter is just the identity. We
extend these inclusions to

ι : Ea ↪→ Eȧ ⊗ A and ῑ : Ea
δa0

b

−→ Ea0a
b ↪→ Ea0a ⊗ A/A′.

Recall that here and below we use a chosen Weyl structure and the corresponding splittings.
Our aim is to use these tools to express Kostant’s differential ∂ , co-differential ∂∗, and in

particular the Laplace-Kostant operator � (see [18]) in a form suitable for computations in
abstract indices. For any tractor bundle T these operators act on associated vector bundles
of forms twisted by T , Ea ⊗ T , a = ak . Using � they are given by

∂ : Ea ⊗ T ῑ
↪→ Ea0a ⊗ A/A′ ⊗ T �−→ Ea0a ⊗ T ,

∂∗ : Ea ⊗ T ι
↪→ Eȧ ⊗ A ⊗ T �−→ Eȧ ⊗ T and

�k = ∂∂∗ + ∂∗∂ : Ea ⊗ T −→ Ea ⊗ T .

Note ∂∗ is invariant but ∂ (and consequently also �k) depends on the choice of splitting
of the tractor bundles in question, i.e., on the Weyl structure. The Weyl structure allows us
to identify the quotient A/A′ with G ×P p+ ⊂ A. However, �k is invariant on completely
reducible subquotients of Ea ⊗T and acts by a scalar multiple on each irreducible component
of such subquotients. That is, we choose a splitting of the tractor bundle Ea ⊗ T to compute
�k but the value of �k on a given completely reducible subquotient alone is independent of
this choice.

The symbol +�� denotes the composition P-module structure of representations or vector
bundles.

Finally, note that one can compute �k from highest weight of bundles concerned, see
[18]. We shall use this less explicit approach in cases where the abstract index computation
is getting too complicated.

Now we are ready to discuss specific geometries. In each case we first summarize the
tractor calculus. In particular, we shall need formulas for the normal tractor covariant deriv-
ative ∇ and Kostant’s differential and co-differential ∂ and ∂∗. Using these we compute the
prolongation covariant derivative ∇̃ and/or d̃ on certain bundles.
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3 Projective geometry

We follow the notation from [1] here. The projective structure on a smooth manifold M is
given by a class [∇] of projectively equivalent torsion-free connections. That is, connections
∇̂ ∈ [∇] are parametrized by one forms Υa ∈ Ea ∼= Γ (T ∗M) and have the form

∇̂aϕ = ∇aϕ + wΥaϕ, ϕ ∈ E(w),

∇̂a f b = ∇a f b + Υa f b + Υc f cδb
a , f b ∈ Eb (2)

∇̂aωb = ∇aωb − Υaωb − Υbωa, ωa ∈ Ea .

The curvature tensor Rab
c

d of a torsion-free ∇ is defined by (∇a∇b − ∇b∇a) f c =
Rab

c
p f p and it decomposes according to

Rab
c

d = Wab
c

d + 2δ[acPb]d + βabδ
c

d , βab = −2P[ab].

Here Wab
c

d is the projectively invariant (and irreducible) Weyl tensor, P is the Schouten
tensor, P̂ab = Pab − ∇aΥb + ΥaΥb, and β̂ab = βab + 2∇[aΥb]. We put Aabc := 2∇[aPb]c.
Then the Bianchi identity ∇[a Rbc]d

e = 0 implies

∇cWab
c

d = (n − 2)Aabd and ∇[aβcd] = 0.

The cohomology class [β] ∈ H2(M, R) is a global invariant of the projective structure.
Moreover, (∇a∇b − ∇b∇a)ϕ = wβabϕ for ϕ ∈ E(w).

3.1 Projective tractors

We shall write sections of the standard projective tractor bundle E A = Ea[−1] +�� E[−1],
respectively, its dual EA = E[1] +�� Ea[1] using the injectors Y A and X A, respectively, YA and
X A as

(
σ a

ρ

)
= Y A

a σ a + X Aρ ∈ E A, respectively,

(
ν

μa

)
= YAν + Xa

Aμa ∈ EA.

Such splittings of E A and EA are parametrized by choices of projective connections and we
call them projective splittings. The change of the splitting under a change of the connection
parametrized by Υa ∈ Ea is

(̂
σ a

ρ

)
=

(
σ a

ρ − Υaσ a

)
, i.e., Ŷ A

a = Y A
a + X AΥa, X̂ A = X A and

(̂
ν

μa

)
=

(
ν

μa + Υaν

)
, i.e., ŶA = YA − Xa

AΥa, X̂a
A = Xa

A.

That is, X A ∈ E A[1], Xa
A ∈ Ea

A[−1] are invariant and Y A
a ∈ E A

a [1], YA ∈ EA[−1] depend
on the choice of the projective scale. We assume the normalization of these is such that
YA X B + Xc

AY B
c = δA

B , i.e., YC XC = 1 and Xa
C Y C

b = δa
b.

The normal covariant derivative is given by

∇c

(
σ a

ρ

)
=

(∇cσ
a + ρδc

a

∇cρ − Pcpσ
p

)
and ∇c

(
ν

μa

)
=

( ∇cν − μc

∇cμa + Pcaν

)
, i.e.,

∇cY A
a = −X APca, ∇c X A = Y A

c and ∇cYA = Xa
APca, ∇c Xa

A = −YAδa
c ,
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and its Ω curvature has the form

Ωab
E

F = Y E
e X f

F Wab
e

f − X E X f
F Aabf ∈ E[ab] ⊗ A.

That is, A = trace-free(EE
F ) is the projective adjoint tractor bundle where “trace-free”

denotes the trace-free part. Hence the curvature action on EC is (∇a∇b − ∇b∇a)FC =
(Ω�F)abC = −Ωab

D
C FD . We shall often write Ωab�FC instead of (Ω�F)abC to simplify

the notation.
Using the notation developed above, the inclusions ι and ῑ defined in 2.2 have the form

Y E
a0 YF : Ea

ῑ→ Ea0a
E

F and X E Xa1

F : Ea
ι→ Eȧ

E
F . Thus

∂ : Ea ⊗ T � fa → Y E
a0 YF fa

�−→ Y E
a0 YF� fa ∈ Ea0ȧ ⊗ T and

∂∗ : Ea ⊗ T � fa → X E Xa1

F fa
�−→ X E Xa1

F � fa ∈ Eȧ ⊗ T ,

and we can easily compute �k on Ea ⊗T using the action � as demonstrated by the following
example.

Example 3.1 We shall compute the caseT = EC in detail. One hasEa
C = Ea

c[−1] +�� Ea[−1],
where Ea is irreducible and Ea

c has two irreducible components, which are the trace and trace-
free parts. We shall compute �k separately for all three irreducible components.

We start with a (not necessarily irreducible) section σa
c ∈ Ea

c[−1]. Then ∂ is zero on
fa

C := Y C
c σa

c and X E Xa1

F �Y C
c σa

c = XCσpȧ
p = (∂∗ f )ȧ

C . Thus ∂∗ f = 0 for trace-
free section σa

c. Assume σa
c = δc

a1 σ̃ȧ. Then fa
C = Y C

a1 σ̃ȧ, (∂
∗ f )ȧ

C = n−k+1
k XC σ̃ȧ thus

(�k f )a
C = (∂∂∗ f )a

C = Y C
a1 σ̃ȧ. Finally if f̄a

C = XCρa then (∂∗ f̄ )ȧ
C = 0, (∂ f̄ )a

C =
Y C

a0ρa and (�k f̄ )a
C = (∂∗∂ f̄ )a

C = n−k
k+1 XCρa.

In summary, �k acts by zero on the trace-free part of Ea
c[−1] = Ea

C/Ea[−1], by n−k+1
k

on the trace part, i.e., on Eȧ[−1] ⊆ Ea
C/Ea[−1] and by n−k

k+1 on Ea[−1] ⊆ Ea
C . Note that the

inclusion Ea[−1] ↪→ Ea
C is realized by XC : Ea[−1] → Ea

C .

3.2 Skew symmetric tractors and tractor forms

The notation for the standard tractor bundle EC developed above can be easily generalized
to the products

∧� EC = EC = Ec(−�) +�� E ċ(−�), where C = C�. Note that
∧� EC ∼=∧n−�+1 ED , hence these products are isomorphic to tractor forms. We put

YC
c = Y [C1

c1 . . . Y C�]
c� ∈ EC

c (�), XC
ċ = X [C1

Y C2

c2 . . . Y C�]
c� ∈ EC

ċ (�),

and write the sections of EC as(
σ c

ρ ċ

)
= YC

c σ c + XC
ċ ρ ċ ∈ EC, σ c ∈ Ec(−�), ρ ċ ∈ E ċ(−�),

where c = c�. The change of the projective rescaling parametrized by Υa is
(̂

σ c

ρ ċ

)
=

(
σ c

ρ ċ − �Υc1σ c

)
, i.e., ŶC

c = YC
c + �Υc1XC

ċ , X̂C
ċ = XC

ċ

and the normal tractor covariant derivative has the form

∇b

(
σ c

ρ ċ

)
=

( ∇bσ
c + ρ ċδb

c1

∇bρ
ċ − �Pbc1σ c

)
, i.e., ∇bYC

c = −� Pbc1XC
ċ , ∇bXC

ċ = YC[bċ]
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Example 3.2 We shall compute the sequence for the tractor bundle EC, C = C�, i.e., EC d̃→
. . .

d̃→ Ean C. Since the filtration of EC has level 2, it follows immediately from the construc-
tion of d̃ that (d̃ F)a0a = (d∇ F)a0a

C + (�k+1)
−1(∂∗d∇d∇ F)a0a

C for every Fa
C ∈ Ea

C (In
particular, the difference between d∇ and d̃ is algebraic in this case.)

Let us compute d̃ in detail. Assume Fa
C = YC

c σa
c + XC

ċ ρa
ċ. Then

(d∇d∇ F)a−1a0a
C = 1

2
Ωa−1a0�Fa

C = 1

2
�Ωa−1a0

C1

P Fa
PĊ

= 1

2
�YC

c Wa−1a0
c

pσa
pċ + XC

ċ ρ̄a−1a0a
ċ

for some section ρ̄ which we shall not need explicitly. Therefore

(∂∗d∇d∇ F)a0a
C =�2

2
XC1

Xr
QΩ[ra0

[Q |P|Fa]|P|Ċ] = �2

2
XC

ċ W[ra0
[r |p|σa]|p|ċ]

= �

2(k + 2)
XC

ċ
[−(� − 1)Wpr

c2

a0σa
pr c̈ + kWa0a1

r
pσr ȧ

pċ].

It remains to apply (�k+1)
−1. Note that the map ∂∗d∇d∇ : Ea

C → Ea0a
C has values in the

(completely reducible) subbundle Ea0a
ċ(−�) ⊆ Ea0a

C, cf. the previous display. The irreduc-

ible components of this subbundle are the bundles tf[Ebk+2−i
d�−i ](−�), 1 ≤ i ≤ min{�, k+2},

where the notation tf[..] denotes the trace-free part of the enclosed bundle. The Laplace-Ko-
stant operator �k+1 on tf[Ebs dt ](−�) acts by At

s(�) := 1
s+1 [n − s − t + 1 + (l − t)(n − s)].

Note that the computation is rather simple if we consider tf[Ebs dt ](−�) as the irreducible
invariant subbundle of EDt (E1...El−t ) and then follow 3.1. Also note At

s(�) is always nonzero.
This of course follows by general means but can be verified directly since tf[Ebs dt ] �= {0} if
and only if s + t ≤ n.

Proposition 3.3 The operator d̃ : Ea
C → Ea0a

C for the projective geometry has the form

(d̃ F)a0a
C = (d∇ F)a0a

C − �2

2

min{�,k+2}∑

i=1

1

A�−i
k+2−i (�)

Proj�−i
k+2−i XC

ċ W[ra0
[r |p|σa]|p|ċ]

where σa
c = X c

C Fa
C, X c

C = X c1

C1 . . . X c�

C� and Projts : Eas+i
ct+i

(�) → tf[Eas ct ](�), i ≥ 0 is
the projection. ��

The operator d̃ simplifies for the special cases � = 1 and k = 0. First assume � = 1. Then
(∂∗d∇d∇)a0a

C = k
2(k+2)

XC Wa0a1
r

pσr ȧ
p has values in the irreducible subbundle Ea0a(−�)

of Ea0a
C . We computed �k+1 acts by n−(k+1)

k+2 on this subbundle. Inverting this scalar, we
obtain the result

(d̃ F)a0a
C = (d∇ F)a0a

C + k

2(n − k − 1)
XC Wa0a1

r
pσr ȧ

p.

Now assume k = 0. Then (∂∗d∇d∇ F)a
C = − �(�−1)

4 XC
ċ Wpr

c2
aσ pr c̈ has values in the

trace-free (thus irreducible) part of the subbundle Ea
ċ(−�). Since �k+1 acts on the trace-free

part of Ea
ċ(−�) ⊆ Ea

C by n−�
2 , the resulting formula is

(d̃ F)a
C = (d∇ F)a

C + �(� − 1)

2(n − �)
XCWpr

c2

aσ pr c̈.
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We claim that d̃ actually coincides with the prolongation covariant derivative ∇̃. To verify
this, first observe ((∇̃ − ∇)F)a

C ∈ Im ∂∗ by the construction of d̃ = ∇̃. Thus, it remains to
verify (d∇̃ ∇̃F)a−1a0

C ∈ Ker ∂∗. But since (d∇∇̃F)a−1a0
C ∈ Ker ∂∗ (again by the construc-

tion of d̃ = ∇̃) and d∇̃ − d∇ : Ea0 → ker ∂∗ ⊆ Ea−1a0
C, cf. the last term in the previous

display, the claim follows. Using the matrix notation, ∇̃ = d̃ has the form

∇̃a

(
σ c

ρ ċ

)
= ∇a

(
σ c

ρ ċ

)
+ �(� − 1)

2(n − �)

(
0

Wpr
c2

aσ pr c̈

)
.

Finally, note that, using the tractor volume form, EC ∼= ED for C = C� and D = Dn−�+1.
The case � = n − 1 (i.e., D = D2) was solved in [9], where the prolongation of the cor-
responding BGG-operator Ea(2) → E(ab) (explicitly fa → ∇(a fb)) is constructed. They
construct the prolongation as the tractor covariant derivative Da : ED2 → EaD2 , cf. [17].
Since Da −∇a : ED2 → im ∂∗ (this follows from the formula for Da on p. 9, [9] after a short
computation) and the curvature of (Da Db − Db Da) : ED2 → Ker ∂∗ (this is obvious form
the formula for Da Db − Db Da on ED2 on the same page) we conclude Da = ∇̃a , cf. 1.1.

Example 3.4 Here we discuss the bundle E(AB) = E(ab)(−2) +�� Ea(−2) +�� E(−2). Con-
sider a section Fa

BC ∈ Ea
(BC), expanded in the basis of injectors as Fa

BC = Y (B
b Y C)

c σa
bc +

X (BY C)
c ρa

c + X B XCνa. Then

(d∇d∇ F)a−1a0a
BC = 1

2
Ωa−1a0�Fa

BC = Ωa−1a0
(B

P Fa
C)P

= Y (B
b Y C)

c Wa−1a0
(b

pσa
c)p + X (BY C)

c

[
1

2
Wa−1a0

c
pρa

p − Aa−1a0 pσa
cp

]
+ X B XC ν̄a

for some section ν̄. Applying ∂∗ we obtain

(∂∗d∇d∇ F)a0a
BC = 2X (BY C)

c W[ra0
(r |p|σa]c)p

+ X B XC
[

1

2
W[ra0

r |p|ρa] p − A[ra0|p|σa] pr
]

.

The filtration degree of E(AB) is 3 and therefore the construction of d̃ will require (at most)
2 steps. In the first step we put d ′ := d∇ + (�XY

k+1)
−1∂∗d∇d∇ : Ea

BC → Ea0a
BC, where

�XY
k+1 denotes �k+1 restricted to the subquotient Ea

c(−2) of Ea
(BC), which corresponds to

the injector X (BY C)
c : Ea

c(−2) ↪→ Ea
(BC). Note that this subquotient has two irreducible

components, but we only need the trace-free part since W[ra0
(r |p|σa]c)p is trace-free. A short

computation reveals ∂∗∂ = �1 acts on the corresponding subquotient of Ea
(BC) by n−k

k+2 .
Hence

(d ′F)a0a
BC =∇a0 Fa

BC − k + 2

n − k

[
2X (BY C)

c W[ra0
(r |p|σa]c)p

+X B XC
(

1

2
W[ra0

r |p|ρa] p − A[ra0|p|σa] pr
)]

.

(3)
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Further computation reveals

(d∇d ′F)a−1a0a
BC =(d∇d∇ F)a−1a0a

BC − k + 2

n − k

[
2Y (B

a−1 Y C)
c W[ra0

(r |p|σa]c)p

+ 2X (BY C)
c

(
+1

2
δc

a−1 W[ra0
r |p|ρa] p − δc

a−1 A[ra0|p|σa] pr

+ ∇a−1 W[ra0
(r |p|σa]c)p

)]
+ X B XCγa−1a0a

for some section γa−1a0a ∈ Ea−1a0a(−2) and

(∂∗d∇d ′F)a0a
BC = − 1

n − k
X B XC

[
2∇s W[ra0

(r |p|σa]s)p

+ (n − k − 2)

(
1

2
W[ra0

r |p|ρa] p − A[ra0|p|σa] pr
)]

.

The previous displays shows that (∂∗d∇d ′F)a0a
BC is the section of the subbundle

Ea0a(−2) ⊆ Ea0a
BC . Since �k+1 acts on this subbundle by 2(n−k−1)

k+2 , we obtain the result

d̃ := d ′ − k+2
2(n−k−1)

∂∗d∇d ′.

Proposition 3.5 The operator d̃ : Ea
(BC) → Ea0a

(BC) for the projective geometry has the
form a2

(d̃ F)a0a
BC =∇a0 Fa

BC − k + 2

n − k

[
2X (BY C)

c W[ra0
(r |p|σa]c)p

− 1

2(n − k − 1)
X B XC

[
2∇s W[ra0

(r |p|σa]s)p

−(n − k)

(
1

2
W[ra0

r |p|ρa] p − A[ra0|p|σa] pr
)]]

,

where σa
bc = X b

B X c
C Fa

BC and ρa
b = 2X b

BYC Fa
BC . ��

We shall discuss the case k = 0 in more details. Then the formula in Proposition 3.5
simplifies to

(d̃ F)a
BC =∇a F BC − 2

n
X (BY C)

c Wra
c

pσ
r p

+ 1

n
X B XC

(
2Arapσ

pr + 1

n − 1
Wra

s
p∇sσ

r p
)

.

This means that d̃ is not a covariant derivative on E(BC), as the term Wra
s

p∇sσ
r p is not

algebraic in F BC , i.e., d̃ �= ∇̃ in this case. To compute ∇̃ explicitly assume k = 0 and put
∇′ := d ′ (this is a covariant derivative on E(BC)). That is, ∇′

a F BC = ∇a F BC − 2
n (Ψ F)a

BC ,
where the homomorphism Ψa : E(BC) → Ea

(BC) is given by the formula (3), i.e.,
(Ψ F)a

BC = X (BY C)
c Wra

c
pσ

r p − X B XC Arapσ
pr . Extending Ψa0 to an endomorphism

Ea1
(BC) → Ea0a1

(BC), an easy computation shows

(Ψ ∇′F)a0a1
BC = X (BY C)

c

[
Wra0

c
p∇a1σ r p − 3

2
Wa0a1

c
pρ

p
]

+ X B XC ν̄
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for some ν̄ ∈ E(−2). Therefore (∂∗Ψ ∇′F)BC
a = − 1

2 X B XC Wra
c

p∇cσ
r p, and we finally

obtain (∂∗d∇′∇′F)a
BC = (∂∗d∇∇′F)a

BC − 2
n (∂∗Ψ ∇′F)BC

a = 0. Since the left hand side
is the curvature of ∇′ (applied to F BC ), this curvature is a map E(BC) → Ker ∂∗. Thus we
verified ∇̃ = ∇′, cf. Theorem 1.1. Rewriting ∇̃ in matrix notation, we obtain

∇̃a

⎛
⎝

σ bc

ρc

ν

⎞
⎠ = ∇a

⎛
⎝

σ bc

ρc

ν

⎞
⎠ − 2

n

⎛
⎝

0
Wra

c
pσ

pr

−Arapσ
pr

⎞
⎠ .

Note that ∇̃a provides the prolongation of the corresponding (first order) BGG operator
from E(bc)(−2) to the totally trace-free part of Ea

(bc)(−2). The same problem was solved
in [10] in terms of the connection defined by (3.6) or the left hand side of (5.2) there. Let
us denote this connection on E(BC) by Da . Note that the formula for Da differs from ∇̃a

in the middle term of the last matrix in the previous display: this term is − 2
n Wra

c
pσ

pr for
∇̃a whereas 1

n Wra
c

pσ
pr in the case of Da , cf. [10, (3.6)]. The reason is purely notational,

specifically in the choice of the projectors. If one replaces X (BY C)
c by − 1

2 X (BY C)
c —which

means, e.g., Fa
BC = Y (B

b Y C)
c σ bc + (− 1

2 X (BY C)
c )ρc + X B XCν—both terms will coincide.

Note also that formulas for ∇a and the normal covariant derivative defined in the display
preceding to [10, Theorem 5.1] coincide after the change of projectors. This confirms that
the results here coincide with those in [10].

4 Conformal geometry

4.1 Conformal geometry and tractor calculus

We summarize some notation and background. Further details may be found in [12]. Let M be
a smooth manifold of dimension n ≥ 3. Recall that a conformal structure of signature (p, q)

on M is a smooth ray subbundle Q ⊂ S2T ∗M whose fiber over x consists of conformally
related signature-(p, q) metrics at the point x . Sections of Q are metrics g on M . So we
may equivalently view the conformal structure as the equivalence class [g] of conformally
related metrics. The principal bundle π : Q → M has structure group R+, and so each
representation R+ � x → x−w/2 ∈ End(R) induces a natural line bundle on (M, [g]) that
we term the conformal density bundle E[w]. We shall write E[w] for the space of sections of
this bundle. We write Ea for the space of sections of the tangent bundle T M and Ea for the
space of sections of T ∗M . The indices here are abstract in the sense of [19] and we follow the
usual conventions from that source. So, for example, Eab is the space of sections of ⊗2T ∗M .
Here and throughout, sections, tensors, and functions are always smooth. When no confusion
is likely to arise, we will use the same notation for a bundle and its section space.

We write g for the conformal metric, that is the tautological section of S2T ∗M ⊗ E[2]
determined by the conformal structure. This is used to identify T M with T ∗M[2]. For many
calculations we employ abstract indices in an obvious way. Given a choice of metric g from
[g], we write ∇ for the corresponding Levi-Civita connection. With these conventions the
Laplacian � is given by � = gab∇a∇b = ∇b∇b . Here we are raising indices and contracting
using the (inverse) conformal metric. Indices will be raised and lowered in this way without
further comment. Note that E[w] is trivialized by a choice of metric g from the conformal
class, and we also write ∇ for the connection corresponding to this trivialization. The coupled
covariant derivative ∇a preserves the conformal metric.
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The curvature Rab
c

d of the Levi-Civita connection (the Riemannian curvature) is given by
[∇a,∇b]vc = Rab

c
dvd ([·, ·] indicates the commutator bracket). It can be decomposed into

the totally trace-free Weyl curvature Cabcd and a remaining part described by the symmetric
Schouten tensor Pab, according to

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c, (4)

where [· · · ] indicates anti-symmetrization over the enclosed indices. The Schouten ten-
sor is a trace modification of the Ricci tensor Ricab = Rca

c
b, and vice versa: Ricab =

(n − 2)Pab + Jgab, where we write J for the trace Pa
a of P. The Cotton tensor is defined

by Aabc := 2∇[aPb]c. Via the Bianchi identity this is related to the divergence of the Weyl
tensor as follows:

(n − 3)Aabc = ∇dCdcab. (5)

Finally we put

Bab = ∇ p Apab + PpqC paqb ∈ E(ab)0 [−2]. (6)

In dimension n = 4 this is the conformally invariant Bach tensor.
Under a conformal transformation we replace a choice of metric g by the metric ĝ = e2Υ g,

where Υ is a smooth function. We recall that, in particular, the Weyl curvature is conformally
invariant Ĉabcd = Cabcd . With Υa := ∇aΥ , the Schouten tensor transforms according to

P̂ab = Pab − ∇aΥb + ΥaΥb − 1
2Υ cΥcgab. (7)

Explicit formulae for the corresponding transformation of the Levi-Civita connection and
its curvatures are given in, e.g., [1,12]. From these one can easily compute the transformation
for a general valence (i.e., rank) s section fbc···d ∈ Ebc···d [w] using the Leibniz rule:

∇̂ā fbc···d =∇ā fbc···d + (w − s)Υā fbc···d − Υb fāc···d · · · − Υd fbc···ā
+ Υ p f pc···dgbā · · · + Υ p fbc···pgdā .

(8)

Next we define the standard tractor bundle over (M, [g]). It is a vector bundle of rank
n + 2 that is defined, for each g ∈ [g], by [E A]g = E[1] ⊕ Ea[1] ⊕ E[−1]. If ĝ = e2Υ g, we
identify (α, μa, τ ) ∈ [E A]g with (̂α, μ̂a, τ̂ ) ∈ [E A]ĝ by the transformation

⎛
⎝

α̂

μ̂a

τ̂

⎞
⎠ =

⎛
⎝

1 0 0
Υa δa

b 0
− 1

2ΥcΥ
c −Υ b 1

⎞
⎠

⎛
⎝

α

μb

τ

⎞
⎠ . (9)

It is straightforward to verify that these identifications are consistent with a change to a
third metric from the conformal class, and so taking the quotient by this equivalence relation
defines the standard tractor bundle E A over the conformal manifold. On a conformal structure
of signature (p, q) the bundle E A admits an invariant metric h AB of signature (p + 1, q + 1)

and an invariant connection, which we shall also denote by ∇a , that preserves h AB . Up to an
isomorphism this is the unique normal conformal tractor connection and therefore induces
the normal connection on

⊗
E A that will be denoted ∇a and termed the (normal) tractor

connection. In a conformal scale g the metric h AB and ∇a on E A are given by

h AB =
⎛
⎝

0 0 1
0 gab 0
1 0 0

⎞
⎠ and ∇a

⎛
⎝

α

μb

τ

⎞
⎠ =

⎛
⎝

∇aα − μa

∇aμb + gabτ + Pabα

∇aτ − Pabμ
b

⎞
⎠ . (10)
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It is readily verified that both of these are conformally well-defined, i.e., independent of the
choice of a metric g ∈ [g]. Note that h AB defines a section of EAB = EA ⊗ EB , where EA is
the dual bundle of E A. Hence we may use h AB and its inverse h AB to raise or lower indices
of EA, E A and their tensor products.

In computations, it is often useful to introduce the ‘projectors’ from E A to the compo-
nents E[1], Ea[1] and E[−1] which are determined by a choice of scale. They are respectively
denoted by X A ∈ EA[1], Z Aa ∈ EAa[1] and YA ∈ EA[−1], where EAa[w] = EA ⊗Ea ⊗E[w],
etc. Using the metrics h AB and gab to raise indices, we define X A, Z Aa, Y A. Then we see that
YA X A = 1, Z Ab Z A

c = gbc, and all other quadratic combinations that contract the tractor
index vanish. In (9) note that α̂ = α, hence X A is conformally invariant. Reformulating (10),
we obtain

∇aYB = Zb
B Pab, ∇a Zb

B = −YBδb
a − X B Pa

b and ∇a X B = Zb
Bgab.

Given a choice of g ∈ [g], the tractor-D operator

DA : EB···E [w] → EAB···E [w − 1]
is defined by

DAV := (n + 2w − 2)wYAV + (n + 2w − 2)Z Aa∇a V − X A(�V + wJV ). (11)

This is conformally invariant, as can be checked directly using the formula above.
The curvature 
 of the tractor connection is defined on EC by [∇a,∇b]V C = 
ab

C
E V E .

Using (10) and the formulae for the Riemannian curvature yields


abE F = Z e
E Z f

F Cabe f − 2X[E Z f
F] Aabf ∈ E[ab][E F] = E[ab] ⊗ A, (12)

where A = E[E F] is the conformal adjoint tractor bundle. We shall write Ωab�FC or
(Ω�F)abC for the curvature action (∇a∇b − ∇b∇a)FC = −Ωab

D
C FD .

Using the notation developed above, the inclusions ι and ῑ defined in 2.2 have the form

−2Y[E Z F]a0 : Ea
ῑ→ Ea0a[E F] and −2X[E Za1

F] : Ea
ι→ Eȧ[E F]. (The scalar −2 is used for

the sake of compatibility of ∂ and ∇, cf. [6].) Thus

∂ : Ea ⊗ T � fa → −2Y[E Z F]a0 fa
�−→ Ea0a ⊗ T and

∂∗ : Ea ⊗ T � fa → −2X[E Za1

F] fa
�−→ Eȧ ⊗ T

and we can easily compute �k on Ea ⊗ T using the tensorial action �.

Example 4.1 We shall compute d̃ on forms twisted by EC . Let a = ak and consider FaC =
YCσa + Z c

Cμca + XCνa ∈ EaC . Then

(d∇d∇ F)a−1a0aC = 1

2
Ωa−1a0�FaC = 1

2
Ωa−1a0 C

P Fa P

= 1

2
Z c

C

[
Ca−1a0c

pμa p + Aa−1a0cσa
] − XC Aa−1a0

pμa p,

hence (∂∗d∇d∇ F)a0aC = − k
2(k+2)

XC
[
Ca0a1

r pμr ȧ p + Aa0a1
rσr ȧ

]
. This is a section of

the subbundle Ea0a[−1] ⊆ Ea0aC and one easily computes that �k acts on this (irreduc-
ible) subbundle by − n−k−1

k+2 . Therefore (d̃ F)a0aC = ∇a0 FaC − k
2(n−k−1)

XC
[
Ca0a1

r pμr ȧ p +
Aa0a1

rσr ȧ
]

for 0 ≤ k ≤ n − 1, and d̃ = d∇ for k ≥ n − 1. Finally, note that the prolongation
covariant derivative coincides with the normal one for k = 0, i.e., ∇̃ = ∇ on EC .
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Example 4.2 The computation of the prolongation covariant derivative is getting rather tech-
nical for more complicated bundles. We shall demonstrate it for the prolongation covariant
derivative ∇̃ on E(BC)0 . (Note that E(BC)0 and E(BC)0 are isomorphic using the tractor met-
ric.) The computation consists of three steps: we start with ∇ and then define the covariant

derivatives ∇,∇ and ∇̃. Taking a section FBC = Y(BYC)σ + Y(B Z c
C)ρc + Z b

(B Z c
C)ωbc +

X(BYC)ν + X(B Z c
C)μc + X(B XC)κ we get

(d∇d∇ F)a0a1 BC

= 1

2
Ωa0a1�FBC = 1

2
Ω ′

a0a1 BC
P Q FP Q

= Y(B Z c
C)

[
1

2
Ca0a1c

pρp+Aa0a1cσ

]
+Z b

(B Z c
C)

[
Ca0a1(b

pωc)p+1

2
Aa0a1(bρc)

]

−1

2
X(BYC) Aa0a1

pρp+X(B Z c
C)

[
1

2
Ca0a1c

pμp−Aa0a1
pωcp+1

2
Aa0a1cν

]

−1

2
X B XC Aa0a1

pμp,

where Ω ′
a0a1 BC

P Q := 2Ωa0a1(B
(P hC)

Q). Applying ∂∗ to the previous display we

obtain (∂∗d∇d∇ F)a1 BC = −2X(B
PrΩ|ra1|C)

Q FP Q, because Ωa0a1 E F is ∂∗-closed (i.e.
XA0

PpΩpa1 P A1 = 0). We put Ψa1 BC
P Q := −2X(B

PrΩ|ra1|C)
Q . Equivalently, Ψa1 BC

P Q

can be obtained by applying ∂∗ to the EBC -factor of Ω ′
a0a1(BC)

P Q . This is exactly the

operator ∂∗
V from [17] since the notation therein means V = E(BC)0 , V ∗ = E(P Q)0 , and

therefore Ω ′
a0a1 BC

P Q ∈ Ea0a1 ⊗ End(V ) is the curvature tensor of ∇a on V = E(BC)0 .

We shall denote the operator ∂∗
V by ∂∗

BC : Ea0a1 BC
P Q → Ea1 BC

P Q here. Thus we have
Ψa1 BC

P Q = 1
2 (∂∗

BCΩ ′)a1 BC
P Q , explicitly

Ψa1 BC
P Q = − Z b

(B Z c
C)

[
X (P Z Q)qCa1(bc)q + X P X Q Aa1(bc)

]

+ X(B Z c
C)

[
Z p(P Z Q)qCa1 pcq + 2X (P Z Q)q Aa1(cq)

]

+ X(B XC) Z p(P Z Q)q Apa1q .

(13)

Since 1
2 Ca1(bc)

pρp + Aa1(bc)σ is a section of the Cartan component of the subquotient
E[a1b] ⊗ Ec of Ea1(BC)0

and �1 acts on this subquotient by − 3
2 , we put ∇a FBC = ∇a FBC +

2
3ΨaBC

P Q FP Q as the first “approximation” of ∇̃. We need to know ∇a0Ψa1 BC
P Q to compute

the curvature Ωa0a1 BC
P Q of ∇. First, it easily follows from Ψa1 BC

P Q := −2X(B
PrΩ|ra1|C)

Q

that

(d∇Ψ )a0a1 BC
P Q = ∇a0Ψa1 BC

P Q = −2∇a0 X(B
PrΩ|ra1|C)

Q

= −2Z e0 Pe1

(B g|a0e0Ωe1a1|C)
Q+2W(B

PΩ|a0a1|C)
Q−X(B

Pr∇|rΩa0a1|C)
Q,

since ∇a−1Ωa0a1C Q = 0. Expanding the expressions in the previous display we obtain,
after some computations that use the differential Bianchi identity, in particular the relation
[14, (29)],
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(d∇Ψ )a0a1 BC
P Q

= −3

2
Y(B Z c

C)

[
X (P Z Q)qCa0a1cq + X P X Q Aa0a1c

] + 3

2
X(BYC) X (P Z Q)q Aa0a1q

+Z b
(B Z c

C)

[
−2Z p(P Z Q)qga0[bC p]a1cq + 1

2
X P X Q(∇b Aa0a1c + Pb

r Ca0a1rc

)

+X (P Z Q)q(−2ga0[b Aq]a1c + 1

2
∇bCa0a1cq − gb[c A|a0a1|q]

)]

+X(B Z c
C)

[
3

2
Y (P Z Q)qCa0a1cq − X (P Z Q)q(∇(c A|a0a1|q) + P(c

sC|a0a1s|q)

)

+Z p(P Z Q)q(
2ga0[c Ap]a1q − 1

2
∇pCa0a1cq + g p[c A|a0a1|q]

)]

+X B XC

[
−3

2
Y (P Z Q)q Aa0a1q + 1

2
Z p(P Z Q)q(∇p Aa0a1q + Pp

sCa0a1sq

)]
.

Now we need to apply ∂∗
BC to the previous display. This yields

(∂∗
BC d∇Ψ )a1 BC

P Q = μ
3

2
Z b

(B Z c
C)

[
X (P Z Q)qCa1(bc)q + X P X Q Aa1(bc)

]

+ X(B Z c
C)

[
1

2
(n − 1)Z p(P Z Q)qCa1(pq)c − 1

2
X P X Q Ba1c

+ X (P Z Q)q(
(n − 4)Aq(a1c) − 3Aa1(qc)

)]

+ X B XC

[
1

2
(n − 1)Z p(P Z Q)q Aa1(pq) + 1

2
X (P Z Q)q Ba1q

]
.

We need to compute Ψ a1 BC
P Q = 1

2 (∂∗
BCΩ)a1 BC

P Q satisfying Ψ a1 BC
P Q FP Q =

(∂∗d∇∇F)a1 BC . Since ∇a FBC = ∇a + 2
3ΨaBC

P Q we have

1

2
Ωa0a1 BC

P Q = 1

2
Ω ′

a0a1 BC
P Q + 2

3
(d∇Ψ )a0a1 BC

P Q + 4

9
(Ψ ∧ Ψ )a0a1 BC

P Q,

where (Ψ ∧ Ψ )a0a1 BC
P Q = Ψa0 BC

RSΨa1 RS
P Q . Since 1

2 (∂∗
BCΩ ′)a1 BC

P Q = Ψa1 BC
P Q by

definition of Ψ , applying ∂∗
BC to the previous display yields

Ψ a1 BC
P Q = 1

2
(∂∗

BCΩ)a1 BC
P Q

= Ψa1 BC
P Q + 2

3
(∂∗

BC d∇Ψ )a1 BC
P Q + 4

9
(∂∗(Ψ ∧ Ψ ))a1 BC

P Q

= 1

3
X(B Z c

C)

[
(n − 4)Z p(P Z Q)qCa1(pq)c + 2(n − 4)X (P Z Q)q Aq(a1c) − X P X Q Ba1c

]

+ 1

3
X B XC

[
(n − 4)Z p(P Z Q)q Aa1(pq) + X (P Z Q)q Ba1q

] + 4

9
(∂∗

BC (Ψ ∧ Ψ ))a1 BC
P Q,

(14)

where

(∂∗
BC (Ψ ∧ Ψ ))a1 BC

P Q = 1

2
X B XC

[
X (P Z Q)qCa1

(rs)pCqrsp + X P X QCa1
(rs)q Aqrs

]
.

(15)
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Remark 4.3 The section (∂∗d∇Ψ )aBC
P Q is closely related to the conformally invariant cur-

vature quantity

WEF =(n − 4)Z e
EZ f

FCab − 2(n − 4)Z e
EX f

F Ae f

− 2(n − 4)X e
EZ f

F Afe + 4X e
EX f

F Bef ,

cf. [11], where all the form indices E, F, e, f have the valence 2. In fact, one easily computes
(∂∗d∇Ψ )aBC

P Q = − 1
3 Z R

a X(B WC)
(P

R
Q). Since (∂∗d∇Ψ )aBC

P Q coincides with Ψ aBC
P Q

up to the terms involving Ca1
(rs)pCqrsp and Ca1

(rs)q Aprs , cf. (14), conformal invariance of
WEF verifies the invariance of the previous computations.

Looking at the form of Ψ a1 BC
P Q FP Q , we see that we need the action of �1 on the

subquotient E(a1c)0
of Ea1 BC (corresponding to the injector X(B Z c

C)). A short computation

reveals this is − n
2 hence the next “approximation” of ∇̃ will be the covariant derivative

∇a := ∇a + 2

n
Ψ aBC

P Q = ∇a + 2

3
ΨaBC

P Q + 2

n
Ψ aBC

P Q : E(P Q) → Ea(BC).

Now we need the curvature Ωa0a1 BC
P Q of ∇a and then to apply ∂∗

BC on 1
2Ωa0a1 BC

P Q . It

follows from the definition of ∇a that

1

2
Ωa0a1 BC

P Q =1

2
Ωa0a1 BC

P Q + 2

n
∇a0Ψ a1 BC

P Q + 4

3n
Ψ a0 BC

RSΨa1 RS
P Q, (16)

since Ψ a0 BC
RSΨ a1 RS

P Q = Ψa0 BC
RSΨ a1 RS

P Q = 0.

The next step is to compute Ψ a1 BC
P Q := 1

2 (∂∗
BCΩ)a1 BC

P Q . We apply ∂∗
BC to the three

terms on the right hand side of (16). Firstly recall 1
2 (∂∗

BCΩ)a1 BC
P Q = Ψ a1 BC

P Q by defini-
tion. Secondly, one gets

(d∇Ψ )a0a1 BC
P Q =1

3
Z b

(B Z c
C)

[
(n − 4)Z p(P Z Q)qgba0 Ca1(pq)c

+ 2(n − 4)X (P Z Q)qgba0 Aq(a1c) − X P X Qgba0 Ba1c

]

+ 1

3
X(B Z c

C)

[
3

2
(n − 4)Y (P Z Q)qCa0a1qc − 3

2
(n − 4)X (P Y Q) Aa0a1c

+ (n − 4)Z p(P Z Q)q(∇a0 Ca1(pq)c + 2ga0(p Aq)(a1c) + 2ga0c Aa1(pq)

)

+ 2X (P Z Q)q(
(n − 4)∇a0 Aq(a1c) − (n − 4)Pa0

pCa1(pq)c + 2ga0[c Bq]a1

+ 2

3
gca0 Ca1

(rs)pCqrsp
)+X P X Q(−∇a0 Ba1c − 2(n − 4)Pa0

q Aq(a1c)

+4

3
gca0 Ca1

(rs)p Ap(rs)
)] + X B XCϕa1

P Q

for some ϕa1
P Q ∈ Ea1

P Q after some computation. Using the last display, it is not difficult
to verify that

(∂∗
BC d∇Ψ )a1 BC

P Q = −n

2
Ψ a1 BC

P Q − 2

9
(n − 2)(∂∗

BC (Ψ ∧ Ψ ))a1 BC
P Q .

Thirdly, one easily derives Ψ a0 BC
RSΨa1 RS

P Q = − n−4
3 Ψa0 BC

RSΨa1 RS
P Q . Hence we finally

obtain

123159



138 Ann Glob Anal Geom (2012) 42:121–145

Ψ a1 BC
P Q = 1

2
(∂∗

BCΩ)a1 BC
P Q = − 8

9n
(n − 3)(∂∗

BC (Ψ ∧ Ψ ))a1 BC
P Q, (17)

where − 8
9n (n − 3) = − 4

9n (n − 2) − 4
9n (n − 4).

In the last step we need the action of �1 on the subbundle Ea1 [−2] ⊆ Ea1(BC)0
corre-

sponding to the injector X B XC . This is the scalar −(n − 1), so by adding 1
n−1Ψ a1 BC

P Q to

∇a we obtain the resulting prolongation covariant derivative

∇̃a := ∇a + 2

3
ΨaBC

P Q + 2

n
Ψ aBC

P Q + 1

n − 1
Ψ aBC

P Q : E(P Q) → Ea(BC).

Proposition 4.4 The prolongation connection ∇̃ : E(BC) → Ea(BC) in the conformal geom-
etry has the form ∇̃a FBC = ∇a FBC + 2

3 Ψ̃aBC
P Q FP Q, where

Ψ̃aBC
P Q = − Z b

(B Z c
C)

[
X (P Z Q)qCa(bc)q + X P X Q Aa(bc)

]

+ X(B Z c
C)

[
− 4

n
Z p(P Z Q)qCa(pq)c + 2X (P Z Q)q(

Aa(cq) + n − 4

n
Aq(ac)

)

− 1

n
X P X Q Bac

]

+ X B XC

[
− 4

n
Z p(P Z Q)q Aa(pq) + 1

n
X (P Z Q)q(

Baq + 4

3(n − 1)
Ca

(rs)pCqrsp
)

+ 4

3n(n − 1)
X P X QCa

(rs)p Aprs

]
.

��
Example 4.5 The prolongation covariant derivative ∇̃ on tractor form bundles EA0A, A = Ak

was computed in [16]. Consider a section FA0A = Y a
A0Aσa + 1

k+1 Z a0a
A0Aμa0a + W ȧ

A0Aνȧ +
X a

A0Aρa ∈ EA0A. Then

∇̃c FA0A =∇c FA0A + 1

2
Z a0a

A0A

[
Cc

p
a0a1σpȧ + k − 1

n
gca0 Ca1a2

pqσpq ä

]

− k(k − 1)

2n(n − k)
W ȧ

A0A

[
(n − 2)Cca2

pqσpq ä − (k − 2)Ca2a3
pqσcpq

...
a

]

+ X a
A0A

[
−Ac

p
a1σpȧ − (k − 1)(k − 2)

2nk
gca1 Ca2a3

pqνpq
...
a

+ k − 1

2(n − k)

(n − 2k

2n
(∇cCa1a2

pq)σpq ä + gca1 Apq
a2σpq ä

− 2Aca1
pσpȧ − Aa1a2

pσcpä + Cca1
pqμpq ȧ

+n(n − k + 1) − 2k

nk
Cc

p
a1a2νpä − k

n
Ca1a2

pqμcpq ä

)]
,

cf. [16, Remark 4.2].
The prolongation covariant derivative ∇̃ simplifies for k = 2 in dimension n = 4. Then

we have (at least locally) the conformal volume form

εc ∈ Ec[4] such that εcεc = 4!, i.e. εeεc = 4!δe1

c1 δe2

c2 δe3

c3 δe4

c4 , (18)

where c = c4, e = e4. Recall ∇ε = 0 for any connection ∇ from the conformal class.
Then the Hodge-star operator ∗ : Eak → Ea4−k , k = 0, . . . , 4 has the form (∗ f )ak =
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εak
r4−k

fr4−k . The eigenvalues of ∗ for k = 2 are ±2. The induced tractor volume form

EC6 = −30 W c4

C6εc4 ∈ EC6 yields analogously the tractor Hodge-star operator ∗ : EB� →
EB6−� . The eigenvalues of E for � = 3 are ±6.

Henceforth we assume k = 2 and n = 4 and ∗F = 6F . If not stated otherwise, all form
indices will have valence 2, e.g., A = A2 or a = a2. Our normalization of the volume forms
E and ε means that

∗ σ = 2σ, ∗μ = −3ν, ∗ν = 2μ, ∗ρ = −2ρ, (19)

i.e., σa is self-adjoint. Using this and (18), one easily verifies

gca0 Ca
rσr = −2Cc

p
aσpa0 , Ca

rμcr = −2Cca1
rμa2r. (20)

Thus the prolongation covariant derivative ∇̃ has the form

∇̃c FA0A =∇c FA0A + 1

4
Z a0a

A0ACc
p

aσpa0 − 1

4
W a

A0ACca
rσr

+ 1

4
X a

A0A

[−4Ac
p

a1σpa2 + gca1 Ar
a2σr − 2Aca1

pσpa2

− Aa
pσcp + 2Cca1

rμa2r + Cc
p

aνp
]
.

The connection ∇̃ simplifies considerably for half-flat structures, i.e., when

εa
rCrb + εb

rCar = 4λCab, λ ∈ {+1,−1}. (21)

The self-adjoint structure λ = 1 equivalently means Ca
r fr = 0 for every anti-self-adjoint

two form fa and the anti-self-adjoint structure λ = −1 analogously means Ca
r fr = 0 for

every self-adjoint fa. It follows from (21), (19), and (18) that

Cc
p

aνp = λCa
rμcr. (22)

We shall discuss the anti-self-dual case λ = −1 in detail. A short computation reveals

Ca
rσr = 0, Ar

aσr = 0 and Aa
pσcp = 2Aa1c

pσa2 p,

where the second and the third equally follow by applying ∇a1
and ∇a0 , respectively, to the

first one and using ∇a0 Car = 2ga0r1 Aar2 . (Note that the last equality says A[a pσc]p = 0.)
From the last display and (22) for λ = −1 we finally obtain the following:

Proposition 4.6 Consider an anti-self-dual conformal structure in the dimension 4. Then the
prolongation connection ∇̃ : E+

[A0A] → E+
c[A0A], A = A2 on the bundle of self-dual tractor

3-forms E+
[A0A] ⊆ E[A0A] has the form

∇̃c FA0A = ∇c FA0A + X a
A0A

[
−2Ac(pa1)σ

p
a2 + 1

2
Cc

p
aνp

]
.

for FA0A ∈ E+
[A0A] where σa = 3XA0A

a FA0A and νa = −6WA0A
a FA0A.

Note that a modification of ∇ on E+
A0A was also obtained in [8, (2.27)], where spinorial

notation is used.
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5 Commutation of higher projective BGG squares for the tractor forms

Let us denote the normal tractor connection by ∇. We shall use the notation from Section
2.1 for forms. In particular, all sequentially labeled indexes are implicitly skewed over.

We denote the standard projective tractor bundle by T . The composition series of (T ∗)k :=∧k T ∗ is Eȧ(k) +�� Ea(k) and the normal tractor covariant derivative ∇ and its curvature Ω

take the form

∇c

(
σȧ
μa

)
=

( ∇cσȧ + μcȧ
∇cμa − k Pca1σȧ

)
, Ωc0c1�

(
σȧ
μa

)
=

(
(k − 1)Wc0c1

p
a2σpä

kWc0c1
p

a1μpȧ + ∗
)

.

Here a = ak . We shall consider sections fc ∈ Ec ⊗ Γ ((T ∗)k), i.e., tractor indices are
suppressed in the notation for f . Here c = c�.

Following Theorem 1.1, we shall start with the sequence Ei = d∇ . Our aim is to find a
suitable modification D : Ec ⊗ (T ∗)k → Ec0c ⊗ (T ∗)k of d∇ such that (D ◦ D f )c−1c0c) ∈
Ker ∂∗ ⊆ Ec−1c0c for every fc ∈ Ec ⊗ (T ∗)k . Specifically, we shall use an algebraic operator
Ψc0 ∈ Ec ⊗ End((T ∗)k) and put (Ψ ( f ))c0c := (Ψ ∧ f )c0c ∈ Im ∂∗ ⊆ Ec0c ⊗ End((T ∗)k),
and we put (D f )c0c := (d∇ f )c0c + (�k)

−1Ψc0 fc ∈ Ec0 ⊗ (T ∗)k . We shall usually write
the endomorphism Ψ as Ψc0 fc, since the notation already requires the skew symmetrization.
Here �k is a scalar multiple determined by the Kostant’s Laplacian.

Now we shall describe the difference between d∇ and D on Ec ⊗ End((T ∗)k). Consider
the section

fc =
(

σȧ
μa

)
∈ Ec ⊗ End((T ∗)k)

and

(d∇d∇ f )c−1c0c = Ωc−1c0� fc =
(

Wc−1c0
p

a2σc pä
∗

)
∈ Ec−1c0c ⊗ End((T ∗)k).

Now we need ∂∗ of the previous display and this will define the endomorphism Ψ . Here we
need it only up to a scalar multiple and a short computation shows

(Ψ ( f ))c0c = (∂∗Ω� f )c0c =
(

0
Wa1a2

p
c0σc pä − �Wc−1c0

p
a1σa2 ċ pä

)
.

We use the modification D := d∇ +α�−1
k Ψ and it remains to determine the operator �k ,

i.e., how we need to rescale particular (g0-)irreducible components of Ψ ( f ).

6 More complicated examples: projective geometry

The standard projective tractor bundleE A has the composition seriesE A = Ea(−1) +�� E(−1).
We shall write a section of this bundle as

f A =
(

σ a

ρ

)
= Y A

a σ a + X Aρ

where X A : E(−1) → E A is invariant. The covariant derivative is then

∇c F A =
(∇cσ

a

∇cρ

)
, i.e., ∇cY A =,∇c X A = .
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7 Almost Grassmannian geometry

A complex almost Grassmannian (or AG-) structure on a smooth manifold M is given by
two auxiliary vector bundles E A and EA′ and the identification

Ea = EA′ ⊗ E A = E A
A′ ,

∧
qE A ∼=

∧
pEA′ , (23)

where p is the rank of EA′ and q is the rank of E A. In fact, all results we obtain hold for all
real forms of a given complex geometry, [13]. Motivated by the case p = q = 2, when the
structure is the spin conformal structure, we shall term E A and EA′ spinor bundles.

Following [13] and Eq. 23, we adopt the convention

E[−1] ∼= EAq ∼= EB′ p
, E[1] ∼= EAq ∼= EB′ p

for line bundles. This isomorphism is given explicitly by the tautological sectionεAq ∈ EAq [1]
as E[−1] � f → f εAq ∈ EAq . A choice of a scale ξ ∈ E[1] is equivalent to the choice of
spinor volume forms εξ

Aq := ξ−1εAq ∈ EAq , and analogously for EA′ p
.

Our conventions for the torsion Tab
c and the curvature Rab

d
c of a covariant derivative ∇a

on T M are given by the equation

2∇[a∇b]vc = Tab
d∇dvc + Rab

c
dvd .

Summarizing [13, Theorem 2.1], for a scale ξ ∈ E[1] on an AG-structure, there are unique
covariant derivatives on E A and EA′ such that the torsion F A′

A
B′
B

C
C ′ of the induced covariant

derivative on T M is totally trace-free, the induced covariant derivative preserves (23), and in
addition ξ is parallel. We denote this class of covariant derivatives, parametrized by sections
of E[1], by [∇]. Changing the scale ξ → ξ̂ = eΥ ξ ∈ E[1] with Υ a smooth function, the
covariant derivative ∇ changes to ∇̂ in a way that

∇̂ A′
A uC = ∇ A′

A uC + δC
AΥ A′

B u B , for uC ∈ E A,

∇̂ A′
A uC ′ = ∇ A′

A uC ′ + δA′
C ′Υ B′

A u B′ , for uC ′ ∈ EC ′ ,

∇̂ A′
A vB = ∇ A′

A vB − Υ A′
B vA, for vB ∈ EB ,

∇̂ A′
A vB′ = ∇ A′

A vB′ − Υ B′
A vA′

, for vB′ ∈ E B′
and also

∇̂a f = ∇a f + wΥa f, for f ∈ E[w],

(24)

where Υa = ∇aΥ . From now on we will use a hat sign to denote quantities corresponding
to the changed scale ξ̂ = eΥ ξ without further notice.

Given ∇ ∈ [∇], we denote all covariant derivatives on tensor products of E A and EA′ also
by ∇. The curvature on spinor bundles is given by

(2∇[a∇b] − Tab
d∇d)vC = Rab

C
DvD, (2∇[a∇b] − Tab

d∇d)vD′ = −Rab
C ′
D′vC ′ .

The curvature of ∇ is Rab
d
c = Rab

D
C δC ′

D′ − Rab
C ′
D′δD

C , where Rab
D′
C ′ and Rab

C
D are trace-free

on the spinor indices displayed. The relations

Rab
C
D = Uab

C
D − δC

B PA′
A

B′
D + δC

A PB′
B

A′
D ,

Rab
C ′
D′ = Uab

C ′
D′ + δB′

D′PA′
A

C ′
B − δA′

D′PB′
B

C ′
A ,

together with the condition U A′
R

B′
B

R
A −U R′

A
B′
B

A′
R′ = 0 (and the algebraic Bianchi identity) deter-

mine Uab
C
D, Uab

C ′
D′ and the Rho-tensor Pab. In more details, the curvature on the (co)tangent

bundle is
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Rab
c
d = Uab

c
d + δD′

C ′ δC
A PB′

B
A′
D − δD′

C ′ δC
B PA′

A
B′
D + δC

DδA′
C ′ PB′

B
D′
A − δC

DδB′
C ′ PA′

A
D′
B ,

where Uab
c
d = Uab

C
DδD′

C ′ − Uab
D′
C ′ δC

D . In this form the tensor U is determined by Urb
r
a =

U A′
R

B′
B

R
A − U R′

A
B′
B

A′
R′ = 0. (Note that the previous display shows the decomposition U =

R + ∂P, where U is ∂∗-closed, cf. the theory of Weyl structures in [6].) Furthermore,

Uab
C
C = −Uab

C ′
C ′ = 2P[ab] and − 2(p + q)P[ab] = ∇cTab

c, (25)

where the last identity follows from the algebraic Bianchi identity.
We will mostly be interested in the case p = 2 and q > 2. In this case the only invariants

are the trace-free part of T (A′B′)
[A B]

C
C ′ and the trace-free part of U [A′ B′]D

(A B C) , [13]. That is, if these
two vanish, the geometry is locally isomorphic to the homogeneous model. Finally, note that
using the algebraic Bianchi identity, we obtain

U R′[A′ B′]
(A B)R′ = U [A′ B′]R

R (A B) = U R′(A′ B′)
[A B]R′ = U (A′ B′)R′

R [A B] = 0,

U R′(A′ B′)
(A B)R′ = U (A′ B′)R

R (A B) = 1

q
Tr

(A′|e|
(A T B′) r

B ) e ,

U R′[A′ B′]
[A B]R′ = U [A′ B′]R

R [A B] = − 1

q + 4
Tr

[A′|e|
[A T B′] r

B ] e .

(26)

7.1 Grassmannian tractor calculus

We follow [13] here. The standard tractor bundle is the (spinor tractor) bundleEα = E A +�� E A′

and we denote its dual by Eα = EA′ +�� EA. That is, we use Greek letters for spinor tractor
abstract indices. Using the injectors Y α

A ∈ Eα
A, Xα

A′ ∈ Eα
A′ , and Y A′

α ∈ E A′
α , X A

α ∈ E A
α , sections

of Eα and Eα are written conveniently as

(
σ A

ρ A′

)
= Y α

Aσ A + Xα
A′ρ A′ ∈ Eα, respectively,

(
νA′
μA

)
= Y A′

α νA′ + X A
α μA ∈ Eα.

Splittings of Eα and Eα are parametrized by a choice of scale ξ ∈ E[1]. The change of the
splitting has the form

(̂
σ A

ρ A′

)
=

(
σ A

ρ A′ − Υ A′
B σ B

)
, i.e., Ŷ α

A = Y α
A + Xα

B′Υ B′
A , X̂α

A′ = Xα
A′ and

(̂
νA′
μA

)
=

(
νA′

μA + Υ A′
A νA′

)
, i.e., Ŷ A′

α = Y A′
α − X B

α Υ A′
B , X̂ A

α = X A
α .

That is, the sections Xα
A′ and X A

α are invariant and Y α
A and Y A′

α depend on the choice of the

scale. They are normalized in such a way that Y β
B X B

α + Y B′
α Xβ

B′ = δα
β , i.e., X B

α Y α
A = δA

B ,

and Xα
A′Y B′

α = δA′ B′
.

The normal covariant tractor derivative is given by

∇ P ′
A

(
σ B

ρB′

)
=

(
∇ P ′

A σ B + ρP ′
δA

B

∇ P ′
A ρB′ − PP ′

A
B′
B σ B

)
and ∇ P ′

A

(
νB′
μB

)
=

(
∇ P ′

A νB′ − δP ′
B′ μA

∇ P ′
A μB + PP ′

A
B′
B νB′

)
.
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That is,

∇ P ′
A Y α

B = −Xα
B′PP ′

A
B′
B ,∇ P ′

A Xα
B′ = Y α

AδP ′
B′ and

∇ P ′
A Y B′

α = X B
α PP ′

A
B′
B , ∇ P ′

A X B
α = −Y P ′

α δB
A .

Its curvature Ωab
α
β is trace-free on the spinor tractor bundle and has the explicit form

Ωab
α
β = − Y α

C Y C ′
β Tab

C
C ′ + Y α

C X D
β Uab

C
D + Xα

C ′Y D′
β Uab

C ′
D′

+ Xα
C ′ XC

β Qab
C ′
C ∈ E[ab]αβ ⊆ E[ab] ⊗ trace-free(Eα

β ),

where Qabc = −2∇[aPb]c + Tab
ePec ∈ E[ab]c and trace-free(Eα

β ) = A is the adjoint tractor

bundle. That is, (∇a∇b − ∇b∇a − Tab
e∇e) f α = Ωab

α
β f β = (Ω� f )ab

α = Ωab� f α in our
notation.

The inclusions ι and ῑ from 2.2 are of the form Y α
A0 Y A0 ′

β : Ea
ῑ→ Ea0a

α
β and Xα

A1 ′ X A1

β :
Ea

ι→ Eȧ
α

β , where we use the identification E
a0 = E A0 ′

A0 and Ea1 = E A1

A1 ′ . Therefore

∂ : Ea ⊗ T � fa → Y α
A0 Y A0 ′

β fa
�−→ Ea0a ⊗ T and

∂∗ : Ea ⊗ T � fa → Xα

A1 ′ X A1

β fa
�−→ Eȧ ⊗ T

for any subbundle T of
⊗

Eα ⊗ ⊗
Eβ ⊗ E[w]. This does not cover all tractor bundles but

will be sufficient in the examples treated below.
Henceforth we assume p = 2, q > 2. Note we have the decomposition Ωab

α
β =

Ω
[A′ B′]
(AB)

α
β + Ω

(A′ B′)
[A B] α

β , where the component Ω
(A′ B′)
[A B] α

β vanishes in the torsion-free case.

7.2 Skew symmetric tractors and tractor forms

We shall also need tractor bundles
∧� Eα = Eα with the notation α = α� for the multiin-

dex. Since
∧� Eα ∼= ∧q+2−� Eβ (we assume orientability here), these are just tractor forms.

Specifically, the case � = q + 1 is just the bundle Eβ .
It follows from the structure of Eα that

Eα = EA +�� E B′Ȧ +�� E [B′C ′]Ä, α = α�, A = A�, 2 ≤ � ≤ q.

Of course we have the isomorphism E [B′C ′]Ä ∼= E Ä[−1] using the spinor volume form
εB′C ′ ∈ E[B′C ′][−1], but it turns out to be more convenient for the computation to use the
form as in the display.

We put

Yα
A = Y [α1

A1 . . . Y α�]
A� ∈ Eα

A, Wα
B′Ȧ = X [α1

B′ Y α2

A2 . . . Y α�]
A� ∈ E α

B′Ȧ,

Xα
B′C ′Ȧ = X [α1

B′ Xα2

C ′Y α3

A3 . . . Y α�]
A� ∈ E α

[B′C ′]Ä,

where Xα
B′C ′Ȧ is invariant and Yα

A and Wα
B′Ȧ are scale dependent. Finally, the normal tractor

connection on these section is

∇cYα
A = −� Wα

B′[ȦP|c|B′
A1],

∇cWα
B′Ȧ = Yα

CȦ
δC ′

B′ − (� − 1) Xα
B′ D′[ȦP|c|D′

A2], and

∇cXα
B′ D′Ȧ = 2 Wα

B′CÄ
δC ′

D′ .
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Example 7.1 We shall demonstrate the prolongation covariant derivative ∇̃ for AG-geome-
tries on tractor bundles corresponding to fundamental representations. These are the bundles∧� Eα for 1 ≤ � ≤ q +1. Since the computation is getting very technical for 1 < � < q +1,
we later restrict to torsion-free manifolds.

First we discuss the cases Eα and Eβ
∼= ∧q+1 Eα . Considering Fα ∈ Eα and Gβ ∈ Eβ , a

short computation gives

(∂∗d∇d∇ F)c
α = 1

2
Xα

D′ X D
ω SD′C ′

C D Fω and

(∂∗d∇d∇G)cβ = −1

2
Xω

D′ X D
β SD′C ′

C D Gω,

where

SD′C ′
C D = U R′ A′ B′

A B R′ = U A′ B′ R
R A B = 1

q
Tr

(A′|e|
(A T B′) r

B ) e − 1

q + 4
Tr

[A′|e|
[A T B′] r

B ] e .

Hence we need the action of the Kostant-Laplace operator � on ED′C ′
C = E(D′C ′)

C ⊕ E [D′C ′]
C .

The eigenvalues are, respectively, 1
2 (q − 1) and 1

2 (q + 1). Therefore the prolongation con-
nection ∇̃ has the form

∇̃c Fα = ∇c Fα − Xα
D′ X D

ω

[
1

q − 1
S(D′C ′)

C D + 1

q + 1
S[D′C ′]

C D

]
Fω for Fα ∈ Eα,

∇̃cGβ = ∇cGβ + Xω
D′ X D

β

[
1

q − 1
S(D′C ′)

C D + 1

q + 1
S[D′C ′]

C D

]
Gω for Gβ ∈ Eβ .

It remains to consider the bundles Eα,α = α� for 2 ≤ � ≤ q . Consider the section Fα =
Yα

AσA +Wα
B′ȦμB′Ȧ +Xα

B′C ′ȦρB′C ′Ä, where σA ∈ EA, μB′Ȧ ∈ E B′Ȧ and ρB′C ′Ä ∈ E [B′C ′]Ä.
A straightforward computation shows that

(d∇d∇ F) α
de = 1

2
Ωde�Fα =1

2
�Ωde

[α1

ω F |ω|α̇]

= 1

2

{
Yα

A

[
�Ude

[A1

Q σ |Q|Ȧ] − Tde
[A1

Q′ μ|Q′|Ȧ]]

+ Wα
B′Ȧ

[
(� − 1)Ude

[A2

Q μ|B′ Q|Ä]+�Qde
B′
Q σ QȦ+Ude

B′
Q′μQ′Ȧ

− 2Tde
[A2

Q′ ρ|B′ Q′|Ä]] + Xα
B′C ′ȦϕB′C ′Ä

}

for a section ϕB′C ′Ä ∈ E B′C ′Ä. We need to compute ∂∗ on the terms in the previous display.
It turns out the computation is getting too technical in general, so we compute ∇̃ in the

torsion-free case only. That is, we assume Tef
C ′
C = 0 (hence also SD′C ′

C D = 0) from now on.
Then we obtain

(∂∗d∇d∇ F)e
α =1

2
(� − 1)

{
� Wα

B′ȦUe
B′[A2

R Q σ |Q R|Ä]

+ Xα
B′C ′Ä

[
(� − 2)Ue

C ′[A3

R Q μ|B′ Q R|...A ] − � Qe
C ′ B′
R Q σ Q RȦ − Ue

C ′ B′
R Q′μQ′ RÄ]}

.

Since U A′ B′ D
A B C = U [A′ B′]D

(A B C) in the torsion-free case, we conclude that

(∂∗d∇d∇ F)e
α = 0.
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This yields the surprising result ∇̃ = ∇ on Eα . The same is obviously true also for � = 1
and � = q + 1. Hence we obtain

Proposition 7.2 The prolongation connection ∇̃c : Eα → E α
c ,α = α� for 1 ≤ � ≤ q + 1

on torsion-free AG-manifolds is equal to the normal tractor connection, i.e., ∇̃ = ∇.
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