Strukturní biologie

Struktura je funkce - Odhalení skrytého systému buňky

Co se naučíte

Popis oboru

Studijní obor Strukturní biologie je moderní interdisciplinární a významně metodologicky zaměřený obor nabízející zájemcům studium z oblasti výzkumu struktury a funkce biologicky aktivních makromolekul - proteinů, nukleových kyselin a jejich funkčních komplexů.

Obor je určen absolventům magisterského studia se znalostmi v oborech biochemie, biofyzika, molekulární biologie, fyzikální chemie, farmacie a příbuzný oborů a umožňuje studentům rozvíjet výzkumné dovednosti a socio-manažerské kompetence nastavením studia a výběrem předmětů a přednášek odpovídajícím oblasti jejich zájmu. Studenti získají potřebné metodické dovednosti a znalosti ke studiu molekulární struktury základních složek živých systémů a získají sociálně-manažerské kompetence v oblasti Life Sciences.

Cíle strukturní biologie zahrnují komplexní popis tvaru a forem molekul obsažených v biologických makromolekulách a využití této znalosti k odhalení, jak různé jsou molekulární formy realizující chemické reakce, které jsou klíčové pro život.

Hlavní nástroje využívané při tomto výzkumu zahrnují rentgenovou difrakci, nukleární magnetickou rezonanci (NMR), kryo-elektronovou mikroskopii (kryoEM), jiné spektroskopické a biofyzikální metody, expresi proteinů, biofyzikální a bioorganickou chemii, počítačové vědy a bioinženýrství.

Program sdružuje lidské i materiální zdroje Masarykovy univerzity a Mendelovy univerzity v Brně.

Při výuce obor využívá unikátních zkušeností pracovníků výzkumného programu Strukturní biologie Středoevropského technologického institutu (CEITEC) v hlavních oblastech oboru (NMR, kryoEM, glykobiochemie, bioinformatika, výpočetní chemie, struktura proteinů a nukleových kyselin).

Úvodní část studia je vyhrazena prohloubení teoretických a praktických znalostí. Paralelně probíhá zpracování samostatné literární rešerše k zadanému tématu doktorské disertace. Samotné těžiště činnosti studentů spočívá v jejich vlastní vědecké práci. Studenti jsou školitelem vedeni, aby byli schopni samostatně realizovat všechny fáze vědeckého projektu. Jsou též vedeni ke zpracování získaných experimentálních dat metodologicky relevantně, stejně tak k jejich interpretaci a následnou prezentaci v různých formách (vystoupení před vědeckou veřejností na odborných fórech, příprava plakátového sdělení i vědeckého článku).

Vzhledem k výjimečně kvalitní infrastruktuře je studentům oboru od počátku studia umožněno využívat široké spektrum metod s různým prostorovým a časovým rozlišením (např. rentgenovou difrakci monokrystalů, nukleární magnetickou resonanci, kryo-elektronovou mikroskopii a tomografii apod.) v rámci čehož získají taktéž praxi ve vyhodnocování a interpretaci naměřených výsledků. Stejně tak studenti získají přehled a praktickou zkušenost z funkčních esejí, často založených na in-vitro studiích využívajících nejrůznější metody molekulární biologie, biochemie a biofyziky a v neposlední řadě se naučí využívat komplementární teoretické informace získané výpočetními metodami chemoinformatiky a bioinformatiky.

Úspěšný absolvent je schopen

  • disponovat hlubokými teoretickými znalostmi z oblasti funkční a vývojové biologie a je si vědom všech aspektů i aktuálních trendů v dané oblasti;
  • samostatně navrhovat a řešit významné vědecké projekty z různých oblastí Life Sciences;
  • zvládat celou škálu laboratorních metod, stejně jako technik instrumentální analýzy biologických vzorků;
  • plánovat rozsáhlé činnosti tvůrčí povahy a získávat a plánovat zdroje pro jejich uskutečnění;
  • navrhovat a standardně používat pokročilé výzkumné postupy s využitím širokého spektra metod s různým prostorovým a časovým rozlišením - rentgenové difrakce monokrystalů, nukleární magnetické resonance, kryo-elektronové mikroskopie a tomografie atd.;
  • vyhodnocovat a interpretovat výsledky naměřené nejrůznějšími metodami molekulární biologie, biochemie a biofyziky, a vyvozovat argumentačně podložené závěry ze svých poznatků;
  • využívat moderních informačních technologií k získávání a zpracování vědeckých informací ze světových elektronických databází, ke sběru a zpracování dat v on-line zapojení přístrojů, k testování validity modelů;
  • zapojit se do mezinárodních výzkumných týmů v oblasti Life Sciences;
  • vlastní poznatky v anglickém jazyce nejen sepsat ve formě vědeckého článku, ale také úspěšně prezentovat a diskutovat s vědeckými kapacitami po celém světě.

Další informace

Detailní informace ke studiu na MU i detailní informace k tomuto oboru jsou k dispozici zde

http://ls-phd.ceitec.cz/

https://www.sci.muni.cz/student/phd/doporuceny-pruchod-studiem

Uplatnění absolventů

Absolventi oboru Strukturní biologie, oboru velice moderního, mají široké pole uplatnění v různých oblastech biomedicínsky a biotechnologicky orientovaných firem a v případě základního výzkumu v akademických institucích. Protože znalosti o prostorovém uspořádání biomolekul, jejich chování a funkci v živém systému jsou podkladem k definování jejich úloh ve fyziologických stejně jako patologických procesech v živých organizmech, jsou středem zájmu výzkumu v mnoha světově významných vědeckých týmech. Inovativní přístup k výuce, společně s vysoce kvalifikovaným a současným kurikulem studijního oboru, vytvořil nejlepší předpoklad pro bezproblémové zapojení absolventů do významných mezinárodních výzkumných týmů.

Přijímací zkouška

Požadavky jsou podrobně uvedeny na http://ls-phd.ceitec.cz/information-for-applicants/ Přijímací řízení probíhá dvoukolově. První kolo je založeno na posouzení dodaných materiálů - pouze kompletní přihlášky včetně všech povinných příloh jsou akceptovány a přezkoumány. Uchazeči, kteří postoupí do druhého kola, jsou pozváni k přijímacímu pohovoru se členy komise.

Kritéria hodnocení

Znalosti v oblasti věd o živé přírodě, motivace k výzkumu a studiu, komunikace v angličtině, dodané materiály a celkový dojem.

Výzkumná zaměření dizertačních prací

Interaction Protein-Protein and Protein-Membrane

Školitel: doc. RNDr. Robert Vácha, PhD.

EXAMPLES OF POTENTIAL PHD TOPICS:

  • Protein motif for bacterial affinity
  • Protein sensitivity of membrane curvature
  • Regulation of protein-protein itneractions

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

http://vacha.ceitec.cz/jobs-openings/

Protein Structure and Dynamics

Školitel: prof. Mgr. Lukáš Žídek, Ph.D.

Microtubule associated protein 2c (MAP2c) is a key factor regulating microtubule dynamics in developing brain neurons, and an example of an intrinsically disordered proteins with an important physiological function and detectable structure-function relationship.

The first goal is to study MAP2c in a natural complexity and by methods providing atomic resolution. Such methods include paramagnetic relaxation interference, to detect and describe transient local structures of MAP2c important for its function, and real-time NMR, to monitor kinetics of MAP2c phosphorylation by relevant kinases of different signalling pathways. The second goal is to characterize interactions of MAP2c with biologically important binding partners, especially with isoforms and a monomeric form of regulatory protein 14-3-3. The third goal is to test the effect of cellular environment on MAP2c by recording NMR spectra at near-to-native conditions (in cells and/or cell lysates) and/or by performing cryo-electron tomography on monolayered neurons.

EXAMPLES OF POTENTIAL PHD TOPICS:

  • Interactions underlying physiological function of Microtubule Associated Protein 2c
  • Structure, dynamics and interactions of bacterial RNA polymerase subunits and sigma factors

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

https://www.ceitec.eu/protein-structure-and-dynamics-lukas-zidek

RNA based regulation of Gene Expression

Školitel: Mgr. PharmDr. Peter Lukavsky, Dr. rer. nat.

We are looking for highly motivated PhD candidates with background in biochemistry and biophysics who share our fascination for RNAs regulating gene expression.

EXAMPLES of potential student doctoral projects:

  • Integrative structural biology of 3’UTRs
  • RNA as a drug target

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

https://www.ceitec.eu/rna-based-regulation-of-gene-expression-peter-lukavsky

Structural Biology of Gene Regulation

Školitel: doc. Mgr. Richard Štefl, Ph.D.

EXAMPLES OF POTENTIAL PHD TOPICS:
  • A structural basis for the cross-talk between histones and RNA Polymerase II
  • Cracking the CTD code
PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

http://stefl-lab.ceitec.cz/

Structural Biology of WNT Signalling

Školitel: Konstantinos Tripsianes, Ph.D.

We apply structural biology methods in order to gain a mechanistic view of CK1Epsilon action in the Wnt signalling pathways. CK1Epsilon represents an attractive therapeutic target but currently two key steps in the CK1Epsilon-mediated Wnt signal transduction are unclear: how CK1Epsilon gets activated and/or engages target proteins in response to Wnt signal and how CK1Epsilon phosphorylates its key substrate Dishevelled (DVL).

Our preliminary data suggest that we can efficiently apply methods of integrated structural biology to (i) probe the DVL conformational landscape using in vitro and in vivo FRET sensors coupled to SAXS and CryoEM, (ii) understand the (auto)phosphorylation regulatory mechanisms of CK1Epsilon, (iii) analyse by NMR the functional consequences of DVL phosphorylation and (iv) monitor DVL phosphorylation by real-time NMR under controlled cellular conditions. The position is part of a multidisciplinary project that combines (i) cellular and molecular biology, (ii) proteomic analysis, (iii) biochemistry and structural biology, and received generous funding in a very competitive grant scheme.

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

https://www.ceitec.eu/protein-dna-interactions-konstantinos-tripsianes

Structural Virology

Školitel: Mgr. Pavel Plevka, Ph.D.

When Staphylococcus aureus cells form a biofilm in the human body they become shielded from the immune system and highly resistant to antibiotics. Current therapeutic options against biofilms are limited to the long-term application of a combination of several antibiotics in high doses or the surgical removal of infected tissues.

Viruses from the Enterovirus genus belong to the family Picornaviridae of human and vertebrate pathogens. Diseases caused by enteroviruses range from upper and lower respiratory tract infections to life-threatening encephalitis. Rhinoviruses are responsible for 40% of the common cold cases that result in yearly cost of tens of billions of US$ in treatments and lost working hours worldwide.

EXAMPLES OF POTENTIAL PHD TOPICS:

  • Structural and time-resolved studies of phage replication in bacterial biofilm
  • Structural study of enterovirus replication in vivo

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

http://plevkalab.ceitec.cz/jobs/

Structure and Dynamics of Nucleic Acids

Školitel: prof. RNDr. Jiří Šponer, DrSc.

Our scientific goal is understanding of the most basic principles of structural dynamics, function and evolution of DNA and RNA.

Our methods are: Classical Molecular Dynamics (MD) simulations. Quantum-chemical (QM) method. Hybrid quantum-classical (QM/MM) methods, quantum molecular dynamics. Structural bioinformatics.

Specific experiments are possible in the field of prebiotic chemistry in collaborating laboratories - need to discussed.

Modern computations are extensively combined with many experimental techniques (NMR, X-Ray, high-energy lasers, biochemical techniques) mostly via numerous collaborations.

We collaborate with 30 foreign and Czech laboratories. We publish about 20 papers annually and belong to the most cited Czech research groups. See the full list of papers on this web page. We have excellent in-house computer facilities, which are regularly upgraded.

We currently work in several mutually interrelated research areas: RNA structural dynamics, folding and catalysis. Protein-RNA complexes. DNA, with focus on G-quadruplexes. Diverse types of quantum-chemical studies on nucleic acids systems.

Origin of life (prebiotic chemistry), i.e., creation of the simplest chemical life on our planet (or anywhere else in the Universe), with a specific attention paid to the formamide pathway to template-free synthesis of the first RNA molecules. This specific project includes also in house experimental research. Besides studies of specific systems, we are also involved extensively in method testing/development, mainly in the field of parametrization of molecular mechanical force fields for DNA

EXAMPLES OF POTENTIAL PHD TOPICS:

  • Experimental and Theoretical Studies of the Origin of Life on the Earth
  • Multiscale Modeling of Nucleic Acids

NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact Prof. Jiri Sponer (sponer@ncbr.muni.cz) for an informal discussion.

MORE INFORMATION:http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

Laboratory web page https://www.ibp.cz/en/research/departments/structure-and-dynamics-of-nucleic-acids/info-about-the-department

List of publications https://www.ibp.cz/en/research/departments/structure-and-dynamics-of-nucleic-acids/publications

Structure of Biosystems and Molecular Materials

Školitel: prof. RNDr. Radek Marek, Ph.D.

The novel forms of nucleotide moieties will be incorporated in oligomers with sequences relevant for biosystems. The compatibility of such artificial building blocks will be evaluated using advanced methods of quantum chemistry that provide also analytical tool for investigation of crucial noncovalent interactions. Available candidates of modified nucleobases will be studied experimentally using solution NMR spectroscopy.

EXAMPLES OF POTENTIAL PHD TOPICS:

  • Designing modified DNA fragments
  • Structure of parallel forms of nucleic acids studied by NMR spectroscopy and molecular modelling

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

https://www.ceitec.eu/structure-of-biosystems-and-molecular-materials-radek-marek

Structure-functional study of proteins involved in host cell recognition

Školitel: prof. RNDr. Michaela Wimmerová, Ph.D.

Lectins are ubiquitous carbohydrate-binding proteins, which play a key role in various processes including cell-cell communication and host-pathogen interaction, but also serve as a valuable tool for medicine and life sciences research. Carbohydrate-mediated recognition plays an important role in the ability of pathogenic bacteria to adhere to the surface of the host cell in the first step of their invasion and infectivity. Lectin-carbohydrate interactions are usually characterised by a low affinity for monovalent ligands that is balanced by multivalency resulting in high avidity for complex glycans or cell surfaces.

The main aim of the PhD work will be the structure-functional studies of carbohydrate binding proteins involved in a bacterial pathogenesis and/or their application as the bioanalytical tool to study a specific glycosylation related to cell specific tissues.

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

https://www.ceitec.eu/glycobiochemistry-michaela-wimmerova

Tau Proteins

Školitel: RNDr. Mgr. Jozef Hritz, Ph.D.

Several neurodegenerative diseases are associated with the formation of fibrous protein aggregates. The fibrillization of amyloid beta peptide into amyloid plaques and the agregation of hyperphosphorylated tau protein into neurofibrillar tangles are main neuropatological signs of Alzheimer disease. Studying of how different factors influence the formation of protein fibrils is the key for understanding this neurodegerative processes. The main aim of this PhD project will be preparation and analysis of tau fibrils prepared by variety of approaches. Major focus will be given on phosphorylation and interaction with 14-3-3 proteins. Interdisciplinary approach combining molecular biology and structural biology (mainly cryoEM tomography and AFM) methods will be applied. The described activities are part of international research projects allowing to spend the part of PhD study at the collaborative groups in Europe or North and South America and to learn specific research techniques, there.

EXAMPLES OF POTENTIAL PHD TOPICS:

1. Are Tau fibrils induced by phosphorylation and the interaction with 14-3-3 proteins relevant for Alzheimer disease?

2. Tau conformational changes induced by phosphorylation and 14-3-3 proteins relevant in neurodegenerative diseases

PLEASE NOTE: before initiating the formal application process to doctoral studies, all interested candidates are required to contact the supervisor and phd@ceitec.muni.cz

MORE INFORMATION: http://ls-phd.ceitec.cz/http-ls-phd-ceitec-cz

https://www.ceitec.eu/protein-structure-and-dynamics-lukas-zidek

Informace o studiu

Zajišťuje Přírodovědecká fakulta
Typ studia Doktorský
Forma prezenční ano
kombinovaná ano
Doba studia 4 roky
Vyučovací jazyk Čeština