Variacizace význačných křivek v Cartanově geometrii (VVKCG)

Project Identification
8J20DE004
Project Period
1/2020 - 12/2022
Investor / Pogramme / Project type
Ministry of Education, Youth and Sports of the CR
MU Faculty or unit
Faculty of Science

Cartanovy geometrie poskytují uniformní popis široké třídy geometrických struktur, která zahrnuje kromě Riemnovských variet také konformní, projektivní a CR-struktury; tyto geometrie hrají důležitou roli v mnoha oblastech matematiky a fyziky. Každá Cartanova geometrie má třídu význačných křivek, což jsou geodetiky v Riemannovském případě a tzv. konformní kružnice na konformních varietách. Cílem tohoto projektu je studium problému, do jaké míry jsou význačné křivky (nebo jejich podtřídy) pro různé Cartanovy geometrie variační, tj. jestli mohou být popsány jako řešení Eulerovy–Lagrangeovy rovnice, a jestli lze nalézt explicitní formuli pro jejich Lagrangeovskou funkci. S vyjímkou plochých Cartanových geometrií nebo speciálních typů Cartanových geometrií (například Riemannovské variety) je obecně známé, že odpověď je negativní. V takových případech je naším cílem najít geometrickou charakterizaci těch geometrií daného typu, pro které jsou význačné křivky (nebo jejich podtřídy) variační.

Publications

Total number of publications: 1


You are running an old browser version. We recommend updating your browser to its latest version.